# tan x - √3 = 0

We will discuss about the general solution of the equation tan x minus square root of 3 equals 0 (i.e., tan x - √3 = 0) or tan x equals square root of 3 (i.e., tan x = √3).

How to find the general solution of the trigonometric equation tan x = √3 or tan x - √3 = 0?

Solution:

We have,

tan x - √3 = 0

⇒ tan x = √3

⇒ tan x = $$\frac{π}{3}$$

Again, tan x = √3

⇒ tan x = $$\frac{π}{3}$$

⇒ tan x = (π + $$\frac{π}{3}$$)

⇒ tan x = tan $$\frac{4π}{3}$$

Let O be the centre of a unit circle. We know that in unit circle, the length of the circumference is 2π.

If we started from A and moves in anticlockwise direction then at the points A, B, A', B' and A, the arc length travelled are 0, $$\frac{π}{2}$$, π, $$\frac{3π}{2}$$, and 2π.

Therefore, from the above unit circle it is clear that the final arm OP of the angle θ lies either in the first or in the final third quadrant.

If the final arm OP lies the first quadrant then,

tan x = √3

⇒ tan x = cos $$\frac{π}{3}$$

⇒ tan x = ten (2nπ + $$\frac{π}{3}$$), Where n ∈ I (i.e., n = 0, ± 1, ± 2, ± 3,…….)

Therefore, x = 2nπ + $$\frac{π}{3}$$ …………….. (i)

Again, the final arm OP lies in the third quadrant then,

tan x = √3

⇒ tan x = cos $$\frac{4π}{3}$$

⇒ tan x = ten (2nπ + $$\frac{4π}{3}$$) , Where n ∈ I (i.e., n = 0, ± 1, ± 2, ± 3,…….)

Therefore, x = 2nπ + $$\frac{π}{3}$$ …………….. (ii)

Therefore, the general solution of equation tan x - √3 = 0 are the infinite sets of values of x given in (i) and (ii).

Hence general solution of tan x - √3 = 0 is x = nπ + $$\frac{π}{3}$$, n ∈ I.

Trigonometric Equations