Properties of Triangle

We will discuss here about the properties of triangle.

Property 1: Relation between the measures of three angles of triangle

Draw three triangles on your not book. Name them as ∆PQR, ∆ABC and ∆LMN. With the help of protector measure all the angles the angles and find them:

In ∆ABC

∠ABC + ∠BCA + ∠CAB = 180°

In ∆PQR

∠PQR + ∠QRP + ∠RPQ = 180°

In ∆LMN

∠LMN + ∠MNL + ∠NLM = 180°

Angle Properties of Triangles

Here, we observe that in each case, the sum of the measures of three angles of a triangle is 180°.

Hence, the sum of the three angles of a triangle is equals to 180°.

Note: If two angles of a triangle are given, we can easily find out its third angle.

For Example:

1. In a right triangle, if one angle is 50°, find its third angle.

Solution:

∆ PQR is a right triangle, that is, one angle is right angle.

Given, ∠PQR = 90°

∠QPR = 50°

Therefore, ∠QRP = 180° - (∠Q + ∠ P)

= 180° - (90° + 50°)

= 180° - 140°

∠R = 40°


Property 2: Relation between lengths of the side

Side Properties of Triangles

Draw a ∆ABC. Measure the length of its three sides. Let the lengths of the three sides be AB = 5 cm, BC = 7 cm, AC = 8 cm. Now add the lengths of any two sides compare this sum with the lengths of the third side.

(i) AB + BC = 5 cm + 7 cm = 12 cm

Since 12 cm > 8 cm

Therefore, (AB + BC) > AC

(ii) BC + CA = 7 cm + 8 cm = 15 cm

Since 15 cm > 5 cm

Therefore, (BC + CA) > AB

(iii) CA + AB = 8 cm + 5 cm = 13 cm

Since 13 cm > 7 cm

Therefore, (CA + AB) > BC

In the below figure we can see in each case, if we add up any two sides of the ∆, the sum is more than its third side.

Properties of Triangle

Thus, we conclude that the sum of the length of any two sides of a triangle is greater than the length of the third side.



For Example:

1. Is it possible to have a triangle whose sides are 5 cm, 6 cm and 4 cm?

Solution:

The lengths of the sides are 5 cm, 6 cm, 4 cm,

(a) 5 cm + 6 cm > 4 cm.

(b) 6 cm + 4 cm > 5 cm.

(c) 5 cm + 4 cm > 6cm.

Hence, a triangle with these sides is possible.

Triangle.

Classification of Triangle.

Properties of Triangle.

Worksheet on Triangle.

To Construct a Triangle whose Three Sides are given.

To Construct a Triangle when Two of its Sides and the included Angles are given.

To Construct a Triangle when Two of its Angles and the included Side are given.

To Construct a Right Triangle when its Hypotenuse and One Side are given.

Worksheet on Construction of Triangles.






5th Grade Geometry Page

5th Grade Math Problems

From Properties of Triangle to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Fraction as a Part of Collection | Pictures of Fraction | Fractional

    Feb 24, 24 04:33 PM

    Pictures of Fraction
    How to find fraction as a part of collection? Let there be 14 rectangles forming a box or rectangle. Thus, it can be said that there is a collection of 14 rectangles, 2 rectangles in each row. If it i…

    Read More

  2. Fraction of a Whole Numbers | Fractional Number |Examples with Picture

    Feb 24, 24 04:11 PM

    A Collection of Apples
    Fraction of a whole numbers are explained here with 4 following examples. There are three shapes: (a) circle-shape (b) rectangle-shape and (c) square-shape. Each one is divided into 4 equal parts. One…

    Read More

  3. Identification of the Parts of a Fraction | Fractional Numbers | Parts

    Feb 24, 24 04:10 PM

    Fractional Parts
    We will discuss here about the identification of the parts of a fraction. We know fraction means part of something. Fraction tells us, into how many parts a whole has been

    Read More

  4. Numerator and Denominator of a Fraction | Numerator of the Fraction

    Feb 24, 24 04:09 PM

    What are the numerator and denominator of a fraction? We have already learnt that a fraction is written with two numbers arranged one over the other and separated by a line.

    Read More

  5. Roman Numerals | System of Numbers | Symbol of Roman Numerals |Numbers

    Feb 24, 24 10:59 AM

    List of Roman Numerals Chart
    How to read and write roman numerals? Hundreds of year ago, the Romans had a system of numbers which had only seven symbols. Each symbol had a different value and there was no symbol for 0. The symbol…

    Read More