Principal Values of Inverse Trigonometric Functions

We will learn how to find the principal values of inverse trigonometric functions in different types of problems.

The principal value of sin\(^{-1}\) x for x > 0, is the length of the arc of a unit circle centred at the origin which subtends an angle at the centre whose sine is x. For this reason sin^-1 x is also denoted by arc sin x. Similarly, cos\(^{-1}\) x, tan\(^{-1}\)  x, csc\(^{-1}\)  x, sec\(^{-1}\)  x and cot\(^{-1}\) x are denoted by arc cos x, arc tan x, arc csc x, arc sec x.

1. Find the principal values of sin\(^{-1}\) (- 1/2)      

Solution: 

If θ be the principal value of sin\(^{-1}\) x then - \(\frac{π}{2}\) ≤ θ ≤ \(\frac{π}{2}\).

Therefore, If the principal value of sin\(^{-1}\) (- 1/2) be θ then sin\(^{-1}\) (- 1/2) = θ

⇒ sin θ = - 1/2 = sin (-\(\frac{π}{6}\)) [Since, - \(\frac{π}{2}\) ≤ θ ≤ \(\frac{π}{2}\)]

Therefore, the principal value of sin\(^{-1}\) (- 1/2) is (-\(\frac{π}{6}\)).



2. Find the principal values of the inverse circular function cos\(^{-1}\) (- √3/2)

Solution:

 If the principal value of cos\(^{-1}\) x is θ then we know, 0 ≤ θ ≤ π.

Therefore, If the principal value of cos\(^{-1}\)  (- √3/2) be θ then cos\(^{-1}\)  (- √3/2) = θ

⇒ cos θ = (- √3/2) = cos \(\frac{π}{6}\) = cos (π - \(\frac{π}{6}\)) [Since, 0 ≤ θ ≤ π]

Therefore, the principal value of cos\(^{-1}\)  (- √3/2) is π - \(\frac{π}{6}\) = \(\frac{5π}{6}\).

 

3. Find the principal values of the inverse trig function tan\(^{-1}\) (1/√3)

Solution:

If the principal value of tan\(^{-1}\) x is θ then we know, - \(\frac{π}{2}\) < θ < \(\frac{π}{2}\).

Therefore, If the principal value of tan\(^{-1}\) (1/√3) be θ then tan\(^{-1}\) (1/√3) = θ

⇒ tan θ = 1/√3 = tan \(\frac{π}{6}\) [Since, - \(\frac{π}{2}\) < θ < \(\frac{π}{2}\)]

Therefore, the principal value of tan\(^{-1}\) (1/√3) is \(\frac{π}{6}\).

 

4. Find the principal values of the inverse circular function cot\(^{-1}\) (- 1)

Solution:

If the principal value of cot\(^{-1}\) x is α then we know, - \(\frac{π}{2}\) ≤ θ ≤ \(\frac{π}{2}\) and θ ≠ 0.

Therefore, If the principal value of cot\(^{-1}\) (- 1) be α then cot\(^{-1}\) (- 1) = θ

⇒ cot θ = (- 1) = cot (-\(\frac{π}{4}\)) [Since, - \(\frac{π}{2}\) ≤ θ ≤ \(\frac{π}{2}\)]  

Therefore, the principal value of cot\(^{-1}\) (- 1) is (-\(\frac{π}{4}\)).    

 

5. Find the principal values of the inverse trig function sec\(^{-1}\) (1)

Solution:

If the principal value of sec\(^{-1}\) x is α then we know, 0 ≤ θ ≤ π and θ ≠ \(\frac{π}{2}\).

Therefore, If the principal value of sec\(^{-1}\) (1) be α then, sec\(^{-1}\) (1) = θ

⇒ sec θ = 1 = sec 0    [Since, 0 ≤ θ ≤ π]

Therefore, the principal value of sec\(^{-1}\) (1) is 0.

 

6. Find the principal values of the inverse trig function csc\(^{-1}\) (- 1).

Solution:

If the principal value of csc\(^{-1}\) x is α then we know, - \(\frac{π}{2}\) ≤ θ ≤ \(\frac{π}{2}\) and θ ≠ 0.

Therefore, if the principal value of csc\(^{-1}\) (- 1) be θ then csc\(^{-1}\) (- 1) = θ

⇒ csc θ = - 1 = csc (-\(\frac{π}{2}\)) [Since, - \(\frac{π}{2}\) ≤ θ ≤ \(\frac{π}{2}\)]

Therefore, the principal value of csc\(^{-1}\) (- 1) is (-\(\frac{π}{2}\)).

 Inverse Trigonometric Functions




11 and 12 Grade Math

From Principal Values of Inverse Trigonometric Functions to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Thousandths Place in Decimals | Decimal Place Value | Decimal Numbers

    Jul 20, 24 03:45 PM

    Thousandths Place in Decimals
    When we write a decimal number with three places, we are representing the thousandths place. Each part in the given figure represents one-thousandth of the whole. It is written as 1/1000. In the decim…

    Read More

  2. Hundredths Place in Decimals | Decimal Place Value | Decimal Number

    Jul 20, 24 02:30 PM

    Hundredths Place in Decimals
    When we write a decimal number with two places, we are representing the hundredths place. Let us take plane sheet which represents one whole. Now, we divide the sheet into 100 equal parts. Each part r…

    Read More

  3. Tenths Place in Decimals | Decimal Place Value | Decimal Numbers

    Jul 20, 24 12:03 PM

    Tenth Place in Decimals
    The first place after the decimal point is tenths place which represents how many tenths are there in a number. Let us take a plane sheet which represents one whole. Now, divide the sheet into ten equ…

    Read More

  4. Representing Decimals on Number Line | Concept on Formation of Decimal

    Jul 20, 24 10:38 AM

    Representing decimals on number line shows the intervals between two integers which will help us to increase the basic concept on formation of decimal numbers.

    Read More

  5. Decimal Place Value Chart |Tenths Place |Hundredths Place |Thousandths

    Jul 20, 24 01:11 AM

    Decimal place value chart
    Decimal place value chart are discussed here: The first place after the decimal is got by dividing the number by 10; it is called the tenths place.

    Read More