Principal Values of Inverse Trigonometric Functions

We will learn how to find the principal values of inverse trigonometric functions in different types of problems.

The principal value of sin\(^{-1}\) x for x > 0, is the length of the arc of a unit circle centred at the origin which subtends an angle at the centre whose sine is x. For this reason sin^-1 x is also denoted by arc sin x. Similarly, cos\(^{-1}\) x, tan\(^{-1}\)  x, csc\(^{-1}\)  x, sec\(^{-1}\)  x and cot\(^{-1}\) x are denoted by arc cos x, arc tan x, arc csc x, arc sec x.

1. Find the principal values of sin\(^{-1}\) (- 1/2)      

Solution: 

If θ be the principal value of sin\(^{-1}\) x then - \(\frac{π}{2}\) ≤ θ ≤ \(\frac{π}{2}\).

Therefore, If the principal value of sin\(^{-1}\) (- 1/2) be θ then sin\(^{-1}\) (- 1/2) = θ

⇒ sin θ = - 1/2 = sin (-\(\frac{π}{6}\)) [Since, - \(\frac{π}{2}\) ≤ θ ≤ \(\frac{π}{2}\)]

Therefore, the principal value of sin\(^{-1}\) (- 1/2) is (-\(\frac{π}{6}\)).



2. Find the principal values of the inverse circular function cos\(^{-1}\) (- √3/2)

Solution:

 If the principal value of cos\(^{-1}\) x is θ then we know, 0 ≤ θ ≤ π.

Therefore, If the principal value of cos\(^{-1}\)  (- √3/2) be θ then cos\(^{-1}\)  (- √3/2) = θ

⇒ cos θ = (- √3/2) = cos \(\frac{π}{6}\) = cos (π - \(\frac{π}{6}\)) [Since, 0 ≤ θ ≤ π]

Therefore, the principal value of cos\(^{-1}\)  (- √3/2) is π - \(\frac{π}{6}\) = \(\frac{5π}{6}\).

 

3. Find the principal values of the inverse trig function tan\(^{-1}\) (1/√3)

Solution:

If the principal value of tan\(^{-1}\) x is θ then we know, - \(\frac{π}{2}\) < θ < \(\frac{π}{2}\).

Therefore, If the principal value of tan\(^{-1}\) (1/√3) be θ then tan\(^{-1}\) (1/√3) = θ

⇒ tan θ = 1/√3 = tan \(\frac{π}{6}\) [Since, - \(\frac{π}{2}\) < θ < \(\frac{π}{2}\)]

Therefore, the principal value of tan\(^{-1}\) (1/√3) is \(\frac{π}{6}\).

 

4. Find the principal values of the inverse circular function cot\(^{-1}\) (- 1)

Solution:

If the principal value of cot\(^{-1}\) x is α then we know, - \(\frac{π}{2}\) ≤ θ ≤ \(\frac{π}{2}\) and θ ≠ 0.

Therefore, If the principal value of cot\(^{-1}\) (- 1) be α then cot\(^{-1}\) (- 1) = θ

⇒ cot θ = (- 1) = cot (-\(\frac{π}{4}\)) [Since, - \(\frac{π}{2}\) ≤ θ ≤ \(\frac{π}{2}\)]  

Therefore, the principal value of cot\(^{-1}\) (- 1) is (-\(\frac{π}{4}\)).    

 

5. Find the principal values of the inverse trig function sec\(^{-1}\) (1)

Solution:

If the principal value of sec\(^{-1}\) x is α then we know, 0 ≤ θ ≤ π and θ ≠ \(\frac{π}{2}\).

Therefore, If the principal value of sec\(^{-1}\) (1) be α then, sec\(^{-1}\) (1) = θ

⇒ sec θ = 1 = sec 0    [Since, 0 ≤ θ ≤ π]

Therefore, the principal value of sec\(^{-1}\) (1) is 0.

 

6. Find the principal values of the inverse trig function csc\(^{-1}\) (- 1).

Solution:

If the principal value of csc\(^{-1}\) x is α then we know, - \(\frac{π}{2}\) ≤ θ ≤ \(\frac{π}{2}\) and θ ≠ 0.

Therefore, if the principal value of csc\(^{-1}\) (- 1) be θ then csc\(^{-1}\) (- 1) = θ

⇒ csc θ = - 1 = csc (-\(\frac{π}{2}\)) [Since, - \(\frac{π}{2}\) ≤ θ ≤ \(\frac{π}{2}\)]

Therefore, the principal value of csc\(^{-1}\) (- 1) is (-\(\frac{π}{2}\)).

 Inverse Trigonometric Functions




11 and 12 Grade Math

From Principal Values of Inverse Trigonometric Functions to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Perimeter of a Triangle | Perimeter of a Triangle Formula | Examples

    Apr 25, 24 05:13 PM

    Perimeter of a Triangle
    We will discuss here how to find the perimeter of a triangle. We know perimeter of a triangle is the total length (distance) of the boundary of a triangle. Perimeter of a triangle is the sum of length…

    Read More

  2. Perimeter of a Rectangle | How to Find the Perimeter of a Rectangle?

    Apr 25, 24 03:45 PM

    Perimeter of a Rectangle
    We will discuss here how to find the perimeter of a rectangle. We know perimeter of a rectangle is the total length (distance) of the boundary of a rectangle. ABCD is a rectangle. We know that the opp…

    Read More

  3. Perimeter of a Square | How to Find the Perimeter of Square? |Examples

    Apr 25, 24 12:54 PM

    Perimeter of a Square
    We will discuss here how to find the perimeter of a square. Perimeter of a square is the total length (distance) of the boundary of a square. We know that all the sides of a square are equal. Perimete…

    Read More

  4. Dividing 3-Digit by 1-Digit Number | Long Division |Worksheet Answer

    Apr 24, 24 03:46 PM

    Dividing 3-Digit by 1-Digit Number
    Dividing 3-Digit by 1-Digit Numbers are discussed here step-by-step. How to divide 3-digit numbers by single-digit numbers? Let us follow the examples to learn to divide 3-digit number by one-digit nu…

    Read More

  5. Symmetrical Shapes | One, Two, Three, Four & Many-line Symmetry

    Apr 24, 24 03:45 PM

    Symmetrical Figures
    Symmetrical shapes are discussed here in this topic. Any object or shape which can be cut in two equal halves in such a way that both the parts are exactly the same is called symmetrical. The line whi…

    Read More