Principal Values of Inverse Trigonometric Functions

We will learn how to find the principal values of inverse trigonometric functions in different types of problems.

The principal value of sin\(^{-1}\) x for x > 0, is the length of the arc of a unit circle centred at the origin which subtends an angle at the centre whose sine is x. For this reason sin^-1 x is also denoted by arc sin x. Similarly, cos\(^{-1}\) x, tan\(^{-1}\)  x, csc\(^{-1}\)  x, sec\(^{-1}\)  x and cot\(^{-1}\) x are denoted by arc cos x, arc tan x, arc csc x, arc sec x.

1. Find the principal values of sin\(^{-1}\) (- 1/2)      

Solution: 

If θ be the principal value of sin\(^{-1}\) x then - \(\frac{π}{2}\) ≤ θ ≤ \(\frac{π}{2}\).

Therefore, If the principal value of sin\(^{-1}\) (- 1/2) be θ then sin\(^{-1}\) (- 1/2) = θ

⇒ sin θ = - 1/2 = sin (-\(\frac{π}{6}\)) [Since, - \(\frac{π}{2}\) ≤ θ ≤ \(\frac{π}{2}\)]

Therefore, the principal value of sin\(^{-1}\) (- 1/2) is (-\(\frac{π}{6}\)).



2. Find the principal values of the inverse circular function cos\(^{-1}\) (- √3/2)

Solution:

 If the principal value of cos\(^{-1}\) x is θ then we know, 0 ≤ θ ≤ π.

Therefore, If the principal value of cos\(^{-1}\)  (- √3/2) be θ then cos\(^{-1}\)  (- √3/2) = θ

⇒ cos θ = (- √3/2) = cos \(\frac{π}{6}\) = cos (π - \(\frac{π}{6}\)) [Since, 0 ≤ θ ≤ π]

Therefore, the principal value of cos\(^{-1}\)  (- √3/2) is π - \(\frac{π}{6}\) = \(\frac{5π}{6}\).

 

3. Find the principal values of the inverse trig function tan\(^{-1}\) (1/√3)

Solution:

If the principal value of tan\(^{-1}\) x is θ then we know, - \(\frac{π}{2}\) < θ < \(\frac{π}{2}\).

Therefore, If the principal value of tan\(^{-1}\) (1/√3) be θ then tan\(^{-1}\) (1/√3) = θ

⇒ tan θ = 1/√3 = tan \(\frac{π}{6}\) [Since, - \(\frac{π}{2}\) < θ < \(\frac{π}{2}\)]

Therefore, the principal value of tan\(^{-1}\) (1/√3) is \(\frac{π}{6}\).

 

4. Find the principal values of the inverse circular function cot\(^{-1}\) (- 1)

Solution:

If the principal value of cot\(^{-1}\) x is α then we know, - \(\frac{π}{2}\) ≤ θ ≤ \(\frac{π}{2}\) and θ ≠ 0.

Therefore, If the principal value of cot\(^{-1}\) (- 1) be α then cot\(^{-1}\) (- 1) = θ

⇒ cot θ = (- 1) = cot (-\(\frac{π}{4}\)) [Since, - \(\frac{π}{2}\) ≤ θ ≤ \(\frac{π}{2}\)]  

Therefore, the principal value of cot\(^{-1}\) (- 1) is (-\(\frac{π}{4}\)).    

 

5. Find the principal values of the inverse trig function sec\(^{-1}\) (1)

Solution:

If the principal value of sec\(^{-1}\) x is α then we know, 0 ≤ θ ≤ π and θ ≠ \(\frac{π}{2}\).

Therefore, If the principal value of sec\(^{-1}\) (1) be α then, sec\(^{-1}\) (1) = θ

⇒ sec θ = 1 = sec 0    [Since, 0 ≤ θ ≤ π]

Therefore, the principal value of sec\(^{-1}\) (1) is 0.

 

6. Find the principal values of the inverse trig function csc\(^{-1}\) (- 1).

Solution:

If the principal value of csc\(^{-1}\) x is α then we know, - \(\frac{π}{2}\) ≤ θ ≤ \(\frac{π}{2}\) and θ ≠ 0.

Therefore, if the principal value of csc\(^{-1}\) (- 1) be θ then csc\(^{-1}\) (- 1) = θ

⇒ csc θ = - 1 = csc (-\(\frac{π}{2}\)) [Since, - \(\frac{π}{2}\) ≤ θ ≤ \(\frac{π}{2}\)]

Therefore, the principal value of csc\(^{-1}\) (- 1) is (-\(\frac{π}{2}\)).

 Inverse Trigonometric Functions




11 and 12 Grade Math

From Principal Values of Inverse Trigonometric Functions to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Addition of Decimals | How to Add Decimals? | Adding Decimals|Addition

    Apr 24, 25 01:45 AM

    Addition of Decimals
    We will discuss here about the addition of decimals. Decimals are added in the same way as we add ordinary numbers. We arrange the digits in columns and then add as required. Let us consider some

    Read More

  2. Addition of Like Fractions | Examples | Videos | Worksheet | Fractions

    Apr 23, 25 09:23 AM

    Adding Like Fractions
    To add two or more like fractions we simplify add their numerators. The denominator remains same. Thus, to add the fractions with the same denominator, we simply add their numerators and write the com…

    Read More

  3. Subtraction | How to Subtract 2-digit, 3-digit, 4-digit Numbers?|Steps

    Apr 23, 25 12:41 AM

    Subtraction Example
    The answer of a subtraction sum is called DIFFERENCE. How to subtract 2-digit numbers? Steps are shown to subtract 2-digit numbers.

    Read More

  4. Subtraction of 4-Digit Numbers | Subtract Numbers with Four Digit

    Apr 23, 25 12:38 AM

    Properties of Subtraction of 4-Digit Numbers
    We will learn about the subtraction of 4-digit numbers (without borrowing and with borrowing). We know when one number is subtracted from another number the result obtained is called the difference.

    Read More

  5. Subtraction with Regrouping | 4-Digit, 5-Digit and 6-Digit Subtraction

    Apr 23, 25 12:34 AM

     Subtraction of 5-Digit Numbers with Regrouping
    We will learn subtraction 4-digit, 5-digit and 6-digit numbers with regrouping. Subtraction of 4-digit numbers can be done in the same way as we do subtraction of smaller numbers. We first arrange the…

    Read More