Principal Values of Inverse Trigonometric Functions

We will learn how to find the principal values of inverse trigonometric functions in different types of problems.

The principal value of sin\(^{-1}\) x for x > 0, is the length of the arc of a unit circle centred at the origin which subtends an angle at the centre whose sine is x. For this reason sin^-1 x is also denoted by arc sin x. Similarly, cos\(^{-1}\) x, tan\(^{-1}\)  x, csc\(^{-1}\)  x, sec\(^{-1}\)  x and cot\(^{-1}\) x are denoted by arc cos x, arc tan x, arc csc x, arc sec x.

1. Find the principal values of sin\(^{-1}\) (- 1/2)      

Solution: 

If θ be the principal value of sin\(^{-1}\) x then - \(\frac{π}{2}\) ≤ θ ≤ \(\frac{π}{2}\).

Therefore, If the principal value of sin\(^{-1}\) (- 1/2) be θ then sin\(^{-1}\) (- 1/2) = θ

⇒ sin θ = - 1/2 = sin (-\(\frac{π}{6}\)) [Since, - \(\frac{π}{2}\) ≤ θ ≤ \(\frac{π}{2}\)]

Therefore, the principal value of sin\(^{-1}\) (- 1/2) is (-\(\frac{π}{6}\)).



2. Find the principal values of the inverse circular function cos\(^{-1}\) (- √3/2)

Solution:

 If the principal value of cos\(^{-1}\) x is θ then we know, 0 ≤ θ ≤ π.

Therefore, If the principal value of cos\(^{-1}\)  (- √3/2) be θ then cos\(^{-1}\)  (- √3/2) = θ

⇒ cos θ = (- √3/2) = cos \(\frac{π}{6}\) = cos (π - \(\frac{π}{6}\)) [Since, 0 ≤ θ ≤ π]

Therefore, the principal value of cos\(^{-1}\)  (- √3/2) is π - \(\frac{π}{6}\) = \(\frac{5π}{6}\).

 

3. Find the principal values of the inverse trig function tan\(^{-1}\) (1/√3)

Solution:

If the principal value of tan\(^{-1}\) x is θ then we know, - \(\frac{π}{2}\) < θ < \(\frac{π}{2}\).

Therefore, If the principal value of tan\(^{-1}\) (1/√3) be θ then tan\(^{-1}\) (1/√3) = θ

⇒ tan θ = 1/√3 = tan \(\frac{π}{6}\) [Since, - \(\frac{π}{2}\) < θ < \(\frac{π}{2}\)]

Therefore, the principal value of tan\(^{-1}\) (1/√3) is \(\frac{π}{6}\).

 

4. Find the principal values of the inverse circular function cot\(^{-1}\) (- 1)

Solution:

If the principal value of cot\(^{-1}\) x is α then we know, - \(\frac{π}{2}\) ≤ θ ≤ \(\frac{π}{2}\) and θ ≠ 0.

Therefore, If the principal value of cot\(^{-1}\) (- 1) be α then cot\(^{-1}\) (- 1) = θ

⇒ cot θ = (- 1) = cot (-\(\frac{π}{4}\)) [Since, - \(\frac{π}{2}\) ≤ θ ≤ \(\frac{π}{2}\)]  

Therefore, the principal value of cot\(^{-1}\) (- 1) is (-\(\frac{π}{4}\)).    

 

5. Find the principal values of the inverse trig function sec\(^{-1}\) (1)

Solution:

If the principal value of sec\(^{-1}\) x is α then we know, 0 ≤ θ ≤ π and θ ≠ \(\frac{π}{2}\).

Therefore, If the principal value of sec\(^{-1}\) (1) be α then, sec\(^{-1}\) (1) = θ

⇒ sec θ = 1 = sec 0    [Since, 0 ≤ θ ≤ π]

Therefore, the principal value of sec\(^{-1}\) (1) is 0.

 

6. Find the principal values of the inverse trig function csc\(^{-1}\) (- 1).

Solution:

If the principal value of csc\(^{-1}\) x is α then we know, - \(\frac{π}{2}\) ≤ θ ≤ \(\frac{π}{2}\) and θ ≠ 0.

Therefore, if the principal value of csc\(^{-1}\) (- 1) be θ then csc\(^{-1}\) (- 1) = θ

⇒ csc θ = - 1 = csc (-\(\frac{π}{2}\)) [Since, - \(\frac{π}{2}\) ≤ θ ≤ \(\frac{π}{2}\)]

Therefore, the principal value of csc\(^{-1}\) (- 1) is (-\(\frac{π}{2}\)).

 Inverse Trigonometric Functions




11 and 12 Grade Math

From Principal Values of Inverse Trigonometric Functions to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Word Problems on Area and Perimeter | Free Worksheet with Answers

    Jul 26, 24 04:58 PM

    word problems on area and perimeter

    Read More

  2. Worksheet on Perimeter | Perimeter of Squares and Rectangle | Answers

    Jul 26, 24 04:37 PM

    Most and Least Perimeter
    Practice the questions given in the worksheet on perimeter. The questions are based on finding the perimeter of the triangle, perimeter of the square, perimeter of rectangle and word problems. I. Find…

    Read More

  3. Perimeter and Area of Irregular Figures | Solved Example Problems

    Jul 26, 24 02:20 PM

    Perimeter of Irregular Figures
    Here we will get the ideas how to solve the problems on finding the perimeter and area of irregular figures. The figure PQRSTU is a hexagon. PS is a diagonal and QY, RO, TX and UZ are the respective d…

    Read More

  4. Perimeter and Area of Plane Figures | Definition of Perimeter and Area

    Jul 26, 24 11:50 AM

    Perimeter of a Triangle
    A plane figure is made of line segments or arcs of curves in a plane. It is a closed figure if the figure begins and ends at the same point. We are familiar with plane figures like squares, rectangles…

    Read More

  5. 5th Grade Math Problems | Table of Contents | Worksheets |Free Answers

    Jul 26, 24 01:35 AM

    In 5th grade math problems you will get all types of examples on different topics along with the solutions. Keeping in mind the mental level of child in Grade 5, every efforts has been made to introdu…

    Read More