# Inverse Trigonometric Function Formula

We will discuss the list of inverse trigonometric function formula which will help us to solve different types of inverse circular or inverse trigonometric function.

(i)  sin (sin$$^{-1}$$ x) = x and sin$$^{-1}$$ (sin θ) = θ, provided that - $$\frac{π}{2}$$ ≤ θ ≤ $$\frac{π}{2}$$ and - 1 ≤ x ≤ 1.

(ii) cos (cos$$^{-1}$$ x) = x and cos$$^{-1}$$ (cos θ) = θ, provided that 0 ≤ θ ≤ π and - 1 ≤ x ≤ 1.

(iii) tan (tan$$^{-1}$$ x) = x and tan$$^{-1}$$ (tan θ) = θ, provided that - $$\frac{π}{2}$$ < θ < $$\frac{π}{2}$$ and - ∞ < x < ∞.

(iv) csc (csc$$^{-1}$$ x) = x and sec$$^{-1}$$ (sec θ) = θ, provided that - $$\frac{π}{2}$$ ≤ θ < 0 or  0 < θ ≤ $$\frac{π}{2}$$  and - ∞ < x ≤ 1 or -1 ≤ x < ∞.

(v) sec (sec$$^{-1}$$ x) = x and sec$$^{-1}$$ (sec θ) = θ, provided that 0 ≤ θ ≤ $$\frac{π}{2}$$ or $$\frac{π}{2}$$ <  θ ≤ π and - ∞ < x ≤ 1 or 1 ≤ x < ∞.

(vi)  cot (cot$$^{-1}$$ x) = x and cot$$^{-1}$$ (cot θ) = θ, provided that 0 < θ < π and - ∞ < x < ∞.

(vii) The function sin$$^{-1}$$ x is defined if – 1 ≤ x ≤ 1; if θ be the principal value of sin$$^{-1}$$ x then - $$\frac{π}{2}$$ ≤ θ ≤ $$\frac{π}{2}$$.

(viii) The function cos$$^{-1}$$  x is defined if – 1 ≤ x ≤ 1; if θ be the principal value of cos$$^{-1}$$ x then 0 ≤ θ ≤ π.

(ix) The function tan$$^{-1}$$ x is defined for any real value of x i.e., - ∞ < x < ∞; if θ be the principal value of tan$$^{-1}$$ x then - $$\frac{π}{2}$$ < θ < $$\frac{π}{2}$$.

(x)  The function cot$$^{-1}$$ x is defined when - ∞ < x < ∞; if θ be the principal value of cot$$^{-1}$$ x then - $$\frac{π}{2}$$ < θ < $$\frac{π}{2}$$ and θ ≠ 0.

(xi) The function sec$$^{-1}$$ x is defined when, I x I ≥ 1 ; if θ be the principal value of sec$$^{-1}$$ x then 0 ≤ θ ≤ π and θ ≠ $$\frac{π}{2}$$.

(xii) The function csc$$^{-1}$$ x is defined if I x I ≥ 1; if θ be the principal value of csc$$^{-1}$$ x then - $$\frac{π}{2}$$ < θ < $$\frac{π}{2}$$ and θ ≠ 0.

(xiii) sin$$^{-1}$$ (-x) = - sin$$^{-1}$$ x

(xiv) cos$$^{-1}$$ (-x) = π - cos$$^{-1}$$ x

(xv) tan$$^{-1}$$ (-x) = - tan$$^{-1}$$ x

(xvi) csc$$^{-1}$$ (-x) = - csc$$^{-1}$$ x

(xvii) sec$$^{-1}$$ (-x) = π - sec$$^{-1}$$ x

(xviii) cot$$^{-1}$$ (-x) = cot$$^{-1}$$ x

(xix) In numerical problems principal values of inverse circular functions are generally taken.

(xx) sin$$^{-1}$$ x + cos$$^{-1}$$ x = $$\frac{π}{2}$$

(xxi) sec$$^{-1}$$ x + csc$$^{-1}$$ x = $$\frac{π}{2}$$.

(xxii) tan$$^{-1}$$ x + cot$$^{-1}$$ x = $$\frac{π}{2}$$

(xxiii) sin$$^{-1}$$ x + sin$$^{-1}$$ y = sin$$^{-1}$$ (x $$\sqrt{1 - y^{2}}$$ + y$$\sqrt{1 - x^{2}}$$), if x, y ≥ 0 and x$$^{2}$$  + y$$^{2}$$ ≤ 1.

(xxiv) sin$$^{-1}$$ x + sin$$^{-1}$$ y = π - sin$$^{-1}$$ (x $$\sqrt{1 - y^{2}}$$ + y$$\sqrt{1 - x^{2}}$$), if x, y ≥ 0 and x$$^{2}$$  + y$$^{2}$$ > 1.

(xxv) sin$$^{-1}$$ x - sin$$^{-1}$$ y = sin$$^{-1}$$ (x $$\sqrt{1 - y^{2}}$$ - y$$\sqrt{1 - x^{2}}$$), if x, y ≥ 0 and x$$^{2}$$  + y$$^{2}$$ ≤ 1.

(xxvi) sin$$^{-1}$$ x - sin$$^{-1}$$ y = π - sin$$^{-1}$$ (x $$\sqrt{1 - y^{2}}$$ - y$$\sqrt{1 - x^{2}}$$), if x, y ≥ 0 and x$$^{2}$$  + y$$^{2}$$ > 1.

(xxvii) cos$$^{-1}$$ x + cos$$^{-1}$$ y = cos$$^{-1}$$(xy - $$\sqrt{1 - x^{2}}$$$$\sqrt{1 - y^{2}}$$), if x, y > 0 and x$$^{2}$$  + y$$^{2}$$ ≤  1.

(xxviii) cos$$^{-1}$$ x + cos$$^{-1}$$ y = π - cos$$^{-1}$$(xy - $$\sqrt{1 - x^{2}}$$$$\sqrt{1 - y^{2}}$$), if x, y > 0 and x$$^{2}$$  + y$$^{2}$$ >  1.

(xxix) cos$$^{-1}$$ x - cos$$^{-1}$$ y = cos$$^{-1}$$(xy + $$\sqrt{1 - x^{2}}$$$$\sqrt{1 - y^{2}}$$), if x, y > 0 and x$$^{2}$$  + y$$^{2}$$ ≤  1.

(xxx) cos$$^{-1}$$ x - cos$$^{-1}$$ y = π - cos$$^{-1}$$(xy + $$\sqrt{1 - x^{2}}$$$$\sqrt{1 - y^{2}}$$), if x, y > 0 and x$$^{2}$$  + y$$^{2}$$ >  1.

(xxxi) tan$$^{-1}$$ x + tan$$^{-1}$$ y = tan$$^{-1}$$ ($$\frac{x + y}{1 - xy}$$), if x > 0, y > 0 and xy < 1.

(xxxii) tan$$^{-1}$$ x + tan$$^{-1}$$ y = π + tan$$^{-1}$$ ($$\frac{x + y}{1 - xy}$$), if x > 0, y > 0 and xy > 1.

(xxxiii) tan$$^{-1}$$ x + tan$$^{-1}$$ y = tan$$^{-1}$$ ($$\frac{x + y}{1 - xy}$$) - π, if x < 0, y > 0 and xy > 1.

(xxxiv) tan$$^{-1}$$ x + tan$$^{-1}$$ y + tan$$^{-1}$$ z = tan$$^{-1}$$ $$\frac{x + y + z - xyz}{1 - xy - yz - zx}$$

(xxxv) tan$$^{-1}$$ x - tan$$^{-1}$$ y = tan$$^{-1}$$ ($$\frac{x - y}{1 + xy}$$)

(xxxvi) 2 sin$$^{-1}$$ x = sin$$^{-1}$$ (2x$$\sqrt{1 - x^{2}}$$)

(xxxvii) 2 cos$$^{-1}$$ x = cos$$^{-1}$$ (2x$$^{2}$$ - 1)

(xxxviii) 2 tan$$^{-1}$$ x = tan$$^{-1}$$ ($$\frac{2x}{1 - x^{2}}$$) = sin$$^{-1}$$ ($$\frac{2x}{1 + x^{2}}$$) = cos$$^{-1}$$ ($$\frac{1 - x^{2}}{1 + x^{2}}$$)

(xxxix) 3 sin$$^{-1}$$ x = sin$$^{-1}$$ (3x - 4x$$^{3}$$)

(xxxx) 3 cos$$^{-1}$$ x = cos$$^{-1}$$ (4x$$^{3}$$ - 3x)

(xxxxi) 3 tan$$^{-1}$$ x = tan$$^{-1}$$ ($$\frac{3x - x^{3}}{1 - 3x^{2}}$$)

Inverse Trigonometric Functions

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

## Recent Articles

1. ### Fundamental Geometrical Concepts | Point | Line | Properties of Lines

Apr 18, 24 02:58 AM

The fundamental geometrical concepts depend on three basic concepts — point, line and plane. The terms cannot be precisely defined. However, the meanings of these terms are explained through examples.

2. ### What is a Polygon? | Simple Closed Curve | Triangle | Quadrilateral

Apr 18, 24 02:15 AM

What is a polygon? A simple closed curve made of three or more line-segments is called a polygon. A polygon has at least three line-segments.

3. ### Simple Closed Curves | Types of Closed Curves | Collection of Curves

Apr 18, 24 01:36 AM

In simple closed curves the shapes are closed by line-segments or by a curved line. Triangle, quadrilateral, circle, etc., are examples of closed curves.

4. ### Tangrams Math | Traditional Chinese Geometrical Puzzle | Triangles

Apr 18, 24 12:31 AM

Tangram is a traditional Chinese geometrical puzzle with 7 pieces (1 parallelogram, 1 square and 5 triangles) that can be arranged to match any particular design. In the given figure, it consists of o…