# Inverse Trigonometric Function Formula

We will discuss the list of inverse trigonometric function formula which will help us to solve different types of inverse circular or inverse trigonometric function.

(i)  sin (sin$$^{-1}$$ x) = x and sin$$^{-1}$$ (sin θ) = θ, provided that - $$\frac{π}{2}$$ ≤ θ ≤ $$\frac{π}{2}$$ and - 1 ≤ x ≤ 1.

(ii) cos (cos$$^{-1}$$ x) = x and cos$$^{-1}$$ (cos θ) = θ, provided that 0 ≤ θ ≤ π and - 1 ≤ x ≤ 1.

(iii) tan (tan$$^{-1}$$ x) = x and tan$$^{-1}$$ (tan θ) = θ, provided that - $$\frac{π}{2}$$ < θ < $$\frac{π}{2}$$ and - ∞ < x < ∞.

(iv) csc (csc$$^{-1}$$ x) = x and sec$$^{-1}$$ (sec θ) = θ, provided that - $$\frac{π}{2}$$ ≤ θ < 0 or  0 < θ ≤ $$\frac{π}{2}$$  and - ∞ < x ≤ 1 or -1 ≤ x < ∞.

(v) sec (sec$$^{-1}$$ x) = x and sec$$^{-1}$$ (sec θ) = θ, provided that 0 ≤ θ ≤ $$\frac{π}{2}$$ or $$\frac{π}{2}$$ <  θ ≤ π and - ∞ < x ≤ 1 or 1 ≤ x < ∞.

(vi)  cot (cot$$^{-1}$$ x) = x and cot$$^{-1}$$ (cot θ) = θ, provided that 0 < θ < π and - ∞ < x < ∞.

(vii) The function sin$$^{-1}$$ x is defined if – 1 ≤ x ≤ 1; if θ be the principal value of sin$$^{-1}$$ x then - $$\frac{π}{2}$$ ≤ θ ≤ $$\frac{π}{2}$$.

(viii) The function cos$$^{-1}$$  x is defined if – 1 ≤ x ≤ 1; if θ be the principal value of cos$$^{-1}$$ x then 0 ≤ θ ≤ π.

(ix) The function tan$$^{-1}$$ x is defined for any real value of x i.e., - ∞ < x < ∞; if θ be the principal value of tan$$^{-1}$$ x then - $$\frac{π}{2}$$ < θ < $$\frac{π}{2}$$.

(x)  The function cot$$^{-1}$$ x is defined when - ∞ < x < ∞; if θ be the principal value of cot$$^{-1}$$ x then - $$\frac{π}{2}$$ < θ < $$\frac{π}{2}$$ and θ ≠ 0.

(xi) The function sec$$^{-1}$$ x is defined when, I x I ≥ 1 ; if θ be the principal value of sec$$^{-1}$$ x then 0 ≤ θ ≤ π and θ ≠ $$\frac{π}{2}$$.

(xii) The function csc$$^{-1}$$ x is defined if I x I ≥ 1; if θ be the principal value of csc$$^{-1}$$ x then - $$\frac{π}{2}$$ < θ < $$\frac{π}{2}$$ and θ ≠ 0.

(xiii) sin$$^{-1}$$ (-x) = - sin$$^{-1}$$ x

(xiv) cos$$^{-1}$$ (-x) = π - cos$$^{-1}$$ x

(xv) tan$$^{-1}$$ (-x) = - tan$$^{-1}$$ x

(xvi) csc$$^{-1}$$ (-x) = - csc$$^{-1}$$ x

(xvii) sec$$^{-1}$$ (-x) = π - sec$$^{-1}$$ x

(xviii) cot$$^{-1}$$ (-x) = cot$$^{-1}$$ x

(xix) In numerical problems principal values of inverse circular functions are generally taken.

(xx) sin$$^{-1}$$ x + cos$$^{-1}$$ x = $$\frac{π}{2}$$

(xxi) sec$$^{-1}$$ x + csc$$^{-1}$$ x = $$\frac{π}{2}$$.

(xxii) tan$$^{-1}$$ x + cot$$^{-1}$$ x = $$\frac{π}{2}$$

(xxiii) sin$$^{-1}$$ x + sin$$^{-1}$$ y = sin$$^{-1}$$ (x $$\sqrt{1 - y^{2}}$$ + y$$\sqrt{1 - x^{2}}$$), if x, y ≥ 0 and x$$^{2}$$  + y$$^{2}$$ ≤ 1.

(xxiv) sin$$^{-1}$$ x + sin$$^{-1}$$ y = π - sin$$^{-1}$$ (x $$\sqrt{1 - y^{2}}$$ + y$$\sqrt{1 - x^{2}}$$), if x, y ≥ 0 and x$$^{2}$$  + y$$^{2}$$ > 1.

(xxv) sin$$^{-1}$$ x - sin$$^{-1}$$ y = sin$$^{-1}$$ (x $$\sqrt{1 - y^{2}}$$ - y$$\sqrt{1 - x^{2}}$$), if x, y ≥ 0 and x$$^{2}$$  + y$$^{2}$$ ≤ 1.

(xxvi) sin$$^{-1}$$ x - sin$$^{-1}$$ y = π - sin$$^{-1}$$ (x $$\sqrt{1 - y^{2}}$$ - y$$\sqrt{1 - x^{2}}$$), if x, y ≥ 0 and x$$^{2}$$  + y$$^{2}$$ > 1.

(xxvii) cos$$^{-1}$$ x + cos$$^{-1}$$ y = cos$$^{-1}$$(xy - $$\sqrt{1 - x^{2}}$$$$\sqrt{1 - y^{2}}$$), if x, y > 0 and x$$^{2}$$  + y$$^{2}$$ ≤  1.

(xxviii) cos$$^{-1}$$ x + cos$$^{-1}$$ y = π - cos$$^{-1}$$(xy - $$\sqrt{1 - x^{2}}$$$$\sqrt{1 - y^{2}}$$), if x, y > 0 and x$$^{2}$$  + y$$^{2}$$ >  1.

(xxix) cos$$^{-1}$$ x - cos$$^{-1}$$ y = cos$$^{-1}$$(xy + $$\sqrt{1 - x^{2}}$$$$\sqrt{1 - y^{2}}$$), if x, y > 0 and x$$^{2}$$  + y$$^{2}$$ ≤  1.

(xxx) cos$$^{-1}$$ x - cos$$^{-1}$$ y = π - cos$$^{-1}$$(xy + $$\sqrt{1 - x^{2}}$$$$\sqrt{1 - y^{2}}$$), if x, y > 0 and x$$^{2}$$  + y$$^{2}$$ >  1.

(xxxi) tan$$^{-1}$$ x + tan$$^{-1}$$ y = tan$$^{-1}$$ ($$\frac{x + y}{1 - xy}$$), if x > 0, y > 0 and xy < 1.

(xxxii) tan$$^{-1}$$ x + tan$$^{-1}$$ y = π + tan$$^{-1}$$ ($$\frac{x + y}{1 - xy}$$), if x > 0, y > 0 and xy > 1.

(xxxiii) tan$$^{-1}$$ x + tan$$^{-1}$$ y = tan$$^{-1}$$ ($$\frac{x + y}{1 - xy}$$) - π, if x < 0, y > 0 and xy > 1.

(xxxiv) tan$$^{-1}$$ x + tan$$^{-1}$$ y + tan$$^{-1}$$ z = tan$$^{-1}$$ $$\frac{x + y + z - xyz}{1 - xy - yz - zx}$$

(xxxv) tan$$^{-1}$$ x - tan$$^{-1}$$ y = tan$$^{-1}$$ ($$\frac{x - y}{1 + xy}$$)

(xxxvi) 2 sin$$^{-1}$$ x = sin$$^{-1}$$ (2x$$\sqrt{1 - x^{2}}$$)

(xxxvii) 2 cos$$^{-1}$$ x = cos$$^{-1}$$ (2x$$^{2}$$ - 1)

(xxxviii) 2 tan$$^{-1}$$ x = tan$$^{-1}$$ ($$\frac{2x}{1 - x^{2}}$$) = sin$$^{-1}$$ ($$\frac{2x}{1 + x^{2}}$$) = cos$$^{-1}$$ ($$\frac{1 - x^{2}}{1 + x^{2}}$$)

(xxxix) 3 sin$$^{-1}$$ x = sin$$^{-1}$$ (3x - 4x$$^{3}$$)

(xxxx) 3 cos$$^{-1}$$ x = cos$$^{-1}$$ (4x$$^{3}$$ - 3x)

(xxxxi) 3 tan$$^{-1}$$ x = tan$$^{-1}$$ ($$\frac{3x - x^{3}}{1 - 3x^{2}}$$)

Inverse Trigonometric Functions

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

## Recent Articles

1. ### 5th Grade Fractions | Definition | Examples | Word Problems |Worksheet

Jul 16, 24 09:27 AM

In 5th Grade Fractions we will discuss about definition of fraction, concept of fractions and different types of examples on fractions. A fraction is a number representing a part of a whole. The whole…

2. ### Worksheet on Word Problems on Fractions | Fraction Word Problems | Ans

Jul 16, 24 02:20 AM

In worksheet on word problems on fractions we will solve different types of word problems on multiplication of fractions, word problems on division of fractions etc... 1. How many one-fifths

3. ### Word Problems on Fraction | Math Fraction Word Problems |Fraction Math

Jul 16, 24 01:36 AM

In word problems on fraction we will solve different types of problems on multiplication of fractional numbers and division of fractional numbers.

4. ### Worksheet on Add and Subtract Fractions | Word Problems | Fractions

Jul 16, 24 12:17 AM

Recall the topic carefully and practice the questions given in the math worksheet on add and subtract fractions. The question mainly covers addition with the help of a fraction number line, subtractio…

Any two like fractions can be compared by comparing their numerators. The fraction with larger numerator is greater than the fraction with smaller numerator, for example $$\frac{7}{13}$$ > \(\frac{2…