Inverse Trigonometric Function Formula

We will discuss the list of inverse trigonometric function formula which will help us to solve different types of inverse circular or inverse trigonometric function.

(i)  sin (sin\(^{-1}\) x) = x and sin\(^{-1}\) (sin θ) = θ, provided that - \(\frac{π}{2}\) ≤ θ ≤ \(\frac{π}{2}\) and - 1 ≤ x ≤ 1.

(ii) cos (cos\(^{-1}\) x) = x and cos\(^{-1}\) (cos θ) = θ, provided that 0 ≤ θ ≤ π and - 1 ≤ x ≤ 1.

(iii) tan (tan\(^{-1}\) x) = x and tan\(^{-1}\) (tan θ) = θ, provided that - \(\frac{π}{2}\) < θ < \(\frac{π}{2}\) and - ∞ < x < ∞.

(iv) csc (csc\(^{-1}\) x) = x and sec\(^{-1}\) (sec θ) = θ, provided that - \(\frac{π}{2}\) ≤ θ < 0 or  0 < θ ≤ \(\frac{π}{2}\)  and - ∞ < x ≤ 1 or -1 ≤ x < ∞.

(v) sec (sec\(^{-1}\) x) = x and sec\(^{-1}\) (sec θ) = θ, provided that 0 ≤ θ ≤ \(\frac{π}{2}\) or \(\frac{π}{2}\) <  θ ≤ π and - ∞ < x ≤ 1 or 1 ≤ x < ∞.

(vi)  cot (cot\(^{-1}\) x) = x and cot\(^{-1}\) (cot θ) = θ, provided that 0 < θ < π and - ∞ < x < ∞.

(vii) The function sin\(^{-1}\) x is defined if – 1 ≤ x ≤ 1; if θ be the principal value of sin\(^{-1}\) x then - \(\frac{π}{2}\) ≤ θ ≤ \(\frac{π}{2}\).

(viii) The function cos\(^{-1}\)  x is defined if – 1 ≤ x ≤ 1; if θ be the principal value of cos\(^{-1}\) x then 0 ≤ θ ≤ π.

(ix) The function tan\(^{-1}\) x is defined for any real value of x i.e., - ∞ < x < ∞; if θ be the principal value of tan\(^{-1}\) x then - \(\frac{π}{2}\) < θ < \(\frac{π}{2}\).

(x)  The function cot\(^{-1}\) x is defined when - ∞ < x < ∞; if θ be the principal value of cot\(^{-1}\) x then - \(\frac{π}{2}\) < θ < \(\frac{π}{2}\) and θ ≠ 0.

(xi) The function sec\(^{-1}\) x is defined when, I x I ≥ 1 ; if θ be the principal value of sec\(^{-1}\) x then 0 ≤ θ ≤ π and θ ≠ \(\frac{π}{2}\).

(xii) The function csc\(^{-1}\) x is defined if I x I ≥ 1; if θ be the principal value of csc\(^{-1}\) x then - \(\frac{π}{2}\) < θ < \(\frac{π}{2}\) and θ ≠ 0.

(xiii) sin\(^{-1}\) (-x) = - sin\(^{-1}\) x

(xiv) cos\(^{-1}\) (-x) = π - cos\(^{-1}\) x

(xv) tan\(^{-1}\) (-x) = - tan\(^{-1}\) x

(xvi) csc\(^{-1}\) (-x) = - csc\(^{-1}\) x

(xvii) sec\(^{-1}\) (-x) = π - sec\(^{-1}\) x

(xviii) cot\(^{-1}\) (-x) = cot\(^{-1}\) x

(xix) In numerical problems principal values of inverse circular functions are generally taken.  

(xx) sin\(^{-1}\) x + cos\(^{-1}\) x = \(\frac{π}{2}\)

(xxi) sec\(^{-1}\) x + csc\(^{-1}\) x = \(\frac{π}{2}\).

(xxii) tan\(^{-1}\) x + cot\(^{-1}\) x = \(\frac{π}{2}\)

(xxiii) sin\(^{-1}\) x + sin\(^{-1}\) y = sin\(^{-1}\) (x \(\sqrt{1 - y^{2}}\) + y\(\sqrt{1 - x^{2}}\)), if x, y ≥ 0 and x\(^{2}\)  + y\(^{2}\) ≤ 1.

(xxiv) sin\(^{-1}\) x + sin\(^{-1}\) y = π - sin\(^{-1}\) (x \(\sqrt{1 - y^{2}}\) + y\(\sqrt{1 - x^{2}}\)), if x, y ≥ 0 and x\(^{2}\)  + y\(^{2}\) > 1.

(xxv) sin\(^{-1}\) x - sin\(^{-1}\) y = sin\(^{-1}\) (x \(\sqrt{1 - y^{2}}\) - y\(\sqrt{1 - x^{2}}\)), if x, y ≥ 0 and x\(^{2}\)  + y\(^{2}\) ≤ 1.

(xxvi) sin\(^{-1}\) x - sin\(^{-1}\) y = π - sin\(^{-1}\) (x \(\sqrt{1 - y^{2}}\) - y\(\sqrt{1 - x^{2}}\)), if x, y ≥ 0 and x\(^{2}\)  + y\(^{2}\) > 1.

(xxvii) cos\(^{-1}\) x + cos\(^{-1}\) y = cos\(^{-1}\)(xy - \(\sqrt{1 - x^{2}}\)\(\sqrt{1 - y^{2}}\)), if x, y > 0 and x\(^{2}\)  + y\(^{2}\) ≤  1.

(xxviii) cos\(^{-1}\) x + cos\(^{-1}\) y = π - cos\(^{-1}\)(xy - \(\sqrt{1 - x^{2}}\)\(\sqrt{1 - y^{2}}\)), if x, y > 0 and x\(^{2}\)  + y\(^{2}\) >  1.

(xxix) cos\(^{-1}\) x - cos\(^{-1}\) y = cos\(^{-1}\)(xy + \(\sqrt{1 - x^{2}}\)\(\sqrt{1 - y^{2}}\)), if x, y > 0 and x\(^{2}\)  + y\(^{2}\) ≤  1.

(xxx) cos\(^{-1}\) x - cos\(^{-1}\) y = π - cos\(^{-1}\)(xy + \(\sqrt{1 - x^{2}}\)\(\sqrt{1 - y^{2}}\)), if x, y > 0 and x\(^{2}\)  + y\(^{2}\) >  1.

(xxxi) tan\(^{-1}\) x + tan\(^{-1}\) y = tan\(^{-1}\) (\(\frac{x + y}{1 - xy}\)), if x > 0, y > 0 and xy < 1.

 (xxxii) tan\(^{-1}\) x + tan\(^{-1}\) y = π + tan\(^{-1}\) (\(\frac{x + y}{1 - xy}\)), if x > 0, y > 0 and xy > 1.

(xxxiii) tan\(^{-1}\) x + tan\(^{-1}\) y = tan\(^{-1}\) (\(\frac{x + y}{1 - xy}\)) - π, if x < 0, y > 0 and xy > 1.

(xxxiv) tan\(^{-1}\) x + tan\(^{-1}\) y + tan\(^{-1}\) z = tan\(^{-1}\) \(\frac{x + y + z - xyz}{1 - xy - yz - zx}\)

(xxxv) tan\(^{-1}\) x - tan\(^{-1}\) y = tan\(^{-1}\) (\(\frac{x - y}{1 + xy}\))

(xxxvi) 2 sin\(^{-1}\) x = sin\(^{-1}\) (2x\(\sqrt{1 - x^{2}}\))

(xxxvii) 2 cos\(^{-1}\) x = cos\(^{-1}\) (2x\(^{2}\) - 1)

(xxxviii) 2 tan\(^{-1}\) x = tan\(^{-1}\) (\(\frac{2x}{1 - x^{2}}\)) = sin\(^{-1}\) (\(\frac{2x}{1 + x^{2}}\)) = cos\(^{-1}\) (\(\frac{1 - x^{2}}{1 + x^{2}}\))

(xxxix) 3 sin\(^{-1}\) x = sin\(^{-1}\) (3x - 4x\(^{3}\))

(xxxx) 3 cos\(^{-1}\) x = cos\(^{-1}\) (4x\(^{3}\) - 3x)

(xxxxi) 3 tan\(^{-1}\) x = tan\(^{-1}\) (\(\frac{3x - x^{3}}{1 - 3x^{2}}\))

 Inverse Trigonometric Functions




11 and 12 Grade Math

From Inverse Trigonometric Function Formula to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. 5th Grade Fractions | Definition | Examples | Word Problems |Worksheet

    Jul 16, 24 09:27 AM

    Fraction 5/8
    In 5th Grade Fractions we will discuss about definition of fraction, concept of fractions and different types of examples on fractions. A fraction is a number representing a part of a whole. The whole…

    Read More

  2. Worksheet on Word Problems on Fractions | Fraction Word Problems | Ans

    Jul 16, 24 02:20 AM

    In worksheet on word problems on fractions we will solve different types of word problems on multiplication of fractions, word problems on division of fractions etc... 1. How many one-fifths

    Read More

  3. Word Problems on Fraction | Math Fraction Word Problems |Fraction Math

    Jul 16, 24 01:36 AM

    In word problems on fraction we will solve different types of problems on multiplication of fractional numbers and division of fractional numbers.

    Read More

  4. Worksheet on Add and Subtract Fractions | Word Problems | Fractions

    Jul 16, 24 12:17 AM

    Worksheet on Add and Subtract Fractions
    Recall the topic carefully and practice the questions given in the math worksheet on add and subtract fractions. The question mainly covers addition with the help of a fraction number line, subtractio…

    Read More

  5. Comparison of Like Fractions | Comparing Fractions | Like Fractions

    Jul 15, 24 03:22 PM

    Comparison of Like Fractions
    Any two like fractions can be compared by comparing their numerators. The fraction with larger numerator is greater than the fraction with smaller numerator, for example \(\frac{7}{13}\) > \(\frac{2…

    Read More