Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

arctan(x) + arctan(y) + arctan(z) = arctan\(\frac{x + y + z - xyz}{1 - xy - yz - zx}\)

We will learn how to prove the property of the inverse trigonometric function arctan(x) + arctan(y) + arctan(z) = arctan\(\frac{x + y + z - xyz}{1 - xy - yz - zx}\) (i.e., tan\(^{-1}\) x + tan\(^{-1}\) y + tan\(^{-1}\) z = tan\(^{-1}\) \(\frac{x + y + z - xyz}{1 - xy - yz - zx}\))

Prove that, tan\(^{-1}\) x + tan\(^{-1}\) y + tan\(^{-1}\) z = tan\(^{-1}\) \(\frac{x + y + z – xyz}{1 – xy – yz – zx}\)

 Proof : 

 Let, tan\(^{-1}\) x = α, tan\(^{-1}\) y = β and tan\(^{-1}\)γ

Therefore, tan α = x, tan β = y and tan γ = z

We know that, tan (α + β + γ) = \(\frac{tan α + tan β + tan γ - tan α tan β tan γ}{1 - tan α tan β - tan β tan γ - tan γ tan α}\)

tan (α + β + γ)   = \(\frac{x + y + z – xyz}{1 – xy – yz – zx}\)

α + β + γ = tan\(^{-1}\) \(\frac{x + y + z – xyz}{1 – xy – yz – zx}\)

or, tan\(^{-1}\) x + tan\(^{-1}\) y + tan\(^{-1}\) z = tan\(^{-1}\) \(\frac{x + y + z – xyz}{1 – xy – yz – zx}\).                Proved.


Second method:

We can prove tan\(^{-1}\) x + tan\(^{-1}\) y + tan\(^{-1}\) z = tan\(^{-1}\) \(\frac{x + y + z – xyz}{1 – xy – yz – zx}\) in other way.

We know that, tan\(^{-1}\) x + tan\(^{-1}\) y = tan\(^{-1}\) \(\frac{x + y}{1 – xy}\)

Therefore, tan\(^{-1}\) x + tan\(^{-1}\) y + tan\(^{-1}\) z = tan\(^{-1}\) \(\frac{x + y}{1 – xy}\) + tan\(^{-1}\) z

 tan\(^{-1}\) x + tan\(^{-1}\) y + tan\(^{-1}\) z = tan\(^{-1}\) \(\frac{\frac{x + y}{1 – xy} + z}{1 -  \frac{x + y}{1 - xy } ∙ z}\)

tan\(^{-1}\) x + tan\(^{-1}\) y + tan\(^{-1}\) z = tan\(^{-1}\) \(\frac{x + y + z – xyz}{1 – xy – yz – zx}\).          Proved.

 Inverse Trigonometric Functions






11 and 12 Grade Math

From arctan(x) + arctan(y) + arctan(z) to HOME PAGE


Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.