Inverse Trigonometric Functions

We will discuss here about Inverse trigonometric Functions or inverse circular functions.

The inverse of a function f: A B exists if and only if f is one-one onto (i.e., bijection) and given by

f(x) = y⇔ f\(^{-1}\) (y) = x.

Consider the sine function. Clearly, sin: R  R given by sin θ = x for all θ ∈ R is a many-one into function. So, its inverse does not exist. If we restrict its domain to the interval [- \(\frac{π}{2}\), \(\frac{π}{2}\)] then we may have infinitely many values of the angle θ which satisfy the equation sin θ = x i.e., sine of any one of these angles is equal to x. Here angle θ is represented as sin\(^{-1}\)x which is read as sine inverse x or arc sin x. Therefore, the symbol sin\(^{-1}\)x represents an angle and the sine of this angle has the value x.

Note the difference between sin\(^{-1}\)x and sin θ: sin\(^{-1}\)x represents an angle while sin θ represents a pure number; again, for a given value of x (- 1 ≤ x ≤ 1) we may have infinitely many vales of sin\(^{-1}\)x i.e., sin\(^{-1}\)x is a multiple-valued function; but a given value of θ gives a definite finite value of sin θ i.e., sin θ is a single-valued function. Thus, if x is a real number lying between -1 and 1, then sin\(^{-1}\) x is an angle between - \(\frac{π}{2}\) and \(\frac{π}{2}\) whose sine is x i.e.,

sin\(^{-1}\)x = θ

⇔ x = sin θ, where - \(\frac{π}{2}\)  ≤ x ≤ \(\frac{π}{2}\) and - 1 ≤ x ≤ 1.

In the above discussion we have restricted the sine function to the interval [- \(\frac{π}{2}\), \(\frac{π}{2}\)] to ake it a bijection. In fact we restrict the domain of sin θ to any of the interval [- \(\frac{π}{2}\), \(\frac{π}{2}\)], [\(\frac{3π}{2}\), \(\frac{5π}{2}\)], [- \(\frac{5π}{2}\), -\(\frac{3π}{2}\)] etc. sin θ is one-one onto function with range [-1, 1]. We therefore conclude that each of these intervals we can define the inverse of sine function. Thus sin\(^{-1}\)x is a function with domain [-1, 1] = {x ∈ R: - 1 ≤ x ≤ 1} and range [- \(\frac{π}{2}\), \(\frac{π}{2}\)] or [\(\frac{3π}{2}\), \(\frac{5π}{2}\)] or [- \(\frac{5π}{2}\), -\(\frac{3π}{2}\)] and so on.

Similarly, if cos θ = x (- 1 ≤ x ≤ 1 ) then θ = cos\(^{-1}\)x i.e., cos\(^{-1}\)x (cos-inverse x) represents an angle and the cosine of this angle is equal to x. We have similar significances of the angles tan\(^{-1}\)x (tan-inverse x), cot\(^{-1}\)x (cot-inverse x), sec\(^{-1}\)x (sec-inverse x) and csc\(^{-1}\)x (csc-inverse x).

Therefore, if sin θ = x (- 1 ≤ x ≤ 1) then θ = sin\(^{-1}\)x; 

if cos θ = x (- 1 ≤ x ≤ 1) then θ = cos\(^{-1}\)x ; 

if tan θ = x (- ∞ < x < ∞) then θ = tan\(^{-1}\)x ;

if csc θ = x (I x I ≥ 1) then θ = csc\(^{-1}\)x.

if sec θ = x (I x I ≥ 1) then θ = sec\(^{-1}\)x ; and

if cot θ = x (- ∞ < x < ∞) then θ = cot\(^{-1}\)x ;

Conversely, sin\(^{-1}\)x = θ ⇒ sin θ = x;

 cos\(^{-1}\)x = θ ⇒ cos θ = x

tan\(^{-1}\)x = θ ⇒ tan θ = x

csc\(^{-1}\)x = θ ⇒ csc θ = x

cot\(^{-1}\)x = θ ⇒ cot θ = x

The trigonometrical functions sin\(^{-1}\)x, cos\(^{-1}\)x, tan\(^{-1}\)x, cot\(^{-1}\)x, sec\(^{-1}\)x and csc\(^{-1}\)x are called Inverse Circular Functions.

Note: It should be noted that sin\(^{-1}\)x is not equal to (sin x)\(^{-1}\). Also noted that (sin x)\(^{-1}\)is an angle whose sin is x. Remember that sin\(^{-1}\)x is a circular function but (sin x )\(^{-1}\) is the reciprocal of sin x i.e., (sin x)\(^{-1}\) = 1/sin x and it represents a pure number.

 Inverse Trigonometric Functions






11 and 12 Grade Math

From General solution of Trigonometric Equation to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 04, 24 01:30 AM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  2. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Dec 04, 24 01:07 AM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More

  3. Worksheet on Subtraction of Money | Real-life Word Problems | Answers

    Dec 04, 24 12:45 AM

    Worksheet on Subtraction of Money
    Practice the questions given in the worksheet on subtraction of money by using without conversion and by conversion method (without regrouping and with regrouping). Note: Arrange the amount of rupees…

    Read More

  4. Worksheet on Addition of Money | Questions on Adding Amount of Money

    Dec 04, 24 12:06 AM

    Worksheet on Addition of Money
    Practice the questions given in the worksheet on addition of money by using without conversion and by conversion method (without regrouping and with regrouping). Note: Arrange the amount of money in t…

    Read More

  5. Worksheet on Money | Conversion of Money from Rupees to Paisa

    Dec 03, 24 11:37 PM

    Worksheet on Money
    Practice the questions given in the worksheet on money. This sheet provides different types of questions where students need to express the amount of money in short form and long form

    Read More