Inverse Trigonometric Functions

We will discuss here about Inverse trigonometric Functions or inverse circular functions.

The inverse of a function f: A B exists if and only if f is one-one onto (i.e., bijection) and given by

f(x) = y⇔ f\(^{-1}\) (y) = x.

Consider the sine function. Clearly, sin: R  R given by sin θ = x for all θ ∈ R is a many-one into function. So, its inverse does not exist. If we restrict its domain to the interval [- \(\frac{π}{2}\), \(\frac{π}{2}\)] then we may have infinitely many values of the angle θ which satisfy the equation sin θ = x i.e., sine of any one of these angles is equal to x. Here angle θ is represented as sin\(^{-1}\)x which is read as sine inverse x or arc sin x. Therefore, the symbol sin\(^{-1}\)x represents an angle and the sine of this angle has the value x.

Note the difference between sin\(^{-1}\)x and sin θ: sin\(^{-1}\)x represents an angle while sin θ represents a pure number; again, for a given value of x (- 1 ≤ x ≤ 1) we may have infinitely many vales of sin\(^{-1}\)x i.e., sin\(^{-1}\)x is a multiple-valued function; but a given value of θ gives a definite finite value of sin θ i.e., sin θ is a single-valued function. Thus, if x is a real number lying between -1 and 1, then sin\(^{-1}\) x is an angle between - \(\frac{π}{2}\) and \(\frac{π}{2}\) whose sine is x i.e.,

sin\(^{-1}\)x = θ

⇔ x = sin θ, where - \(\frac{π}{2}\)  ≤ x ≤ \(\frac{π}{2}\) and - 1 ≤ x ≤ 1.

In the above discussion we have restricted the sine function to the interval [- \(\frac{π}{2}\), \(\frac{π}{2}\)] to ake it a bijection. In fact we restrict the domain of sin θ to any of the interval [- \(\frac{π}{2}\), \(\frac{π}{2}\)], [\(\frac{3π}{2}\), \(\frac{5π}{2}\)], [- \(\frac{5π}{2}\), -\(\frac{3π}{2}\)] etc. sin θ is one-one onto function with range [-1, 1]. We therefore conclude that each of these intervals we can define the inverse of sine function. Thus sin\(^{-1}\)x is a function with domain [-1, 1] = {x ∈ R: - 1 ≤ x ≤ 1} and range [- \(\frac{π}{2}\), \(\frac{π}{2}\)] or [\(\frac{3π}{2}\), \(\frac{5π}{2}\)] or [- \(\frac{5π}{2}\), -\(\frac{3π}{2}\)] and so on.

Similarly, if cos θ = x (- 1 ≤ x ≤ 1 ) then θ = cos\(^{-1}\)x i.e., cos\(^{-1}\)x (cos-inverse x) represents an angle and the cosine of this angle is equal to x. We have similar significances of the angles tan\(^{-1}\)x (tan-inverse x), cot\(^{-1}\)x (cot-inverse x), sec\(^{-1}\)x (sec-inverse x) and csc\(^{-1}\)x (csc-inverse x).

Therefore, if sin θ = x (- 1 ≤ x ≤ 1) then θ = sin\(^{-1}\)x; 

if cos θ = x (- 1 ≤ x ≤ 1) then θ = cos\(^{-1}\)x ; 

if tan θ = x (- ∞ < x < ∞) then θ = tan\(^{-1}\)x ;

if csc θ = x (I x I ≥ 1) then θ = csc\(^{-1}\)x.

if sec θ = x (I x I ≥ 1) then θ = sec\(^{-1}\)x ; and

if cot θ = x (- ∞ < x < ∞) then θ = cot\(^{-1}\)x ;

Conversely, sin\(^{-1}\)x = θ ⇒ sin θ = x;

 cos\(^{-1}\)x = θ ⇒ cos θ = x

tan\(^{-1}\)x = θ ⇒ tan θ = x

csc\(^{-1}\)x = θ ⇒ csc θ = x

cot\(^{-1}\)x = θ ⇒ cot θ = x

The trigonometrical functions sin\(^{-1}\)x, cos\(^{-1}\)x, tan\(^{-1}\)x, cot\(^{-1}\)x, sec\(^{-1}\)x and csc\(^{-1}\)x are called Inverse Circular Functions.

Note: It should be noted that sin\(^{-1}\)x is not equal to (sin x)\(^{-1}\). Also noted that (sin x)\(^{-1}\)is an angle whose sin is x. Remember that sin\(^{-1}\)x is a circular function but (sin x )\(^{-1}\) is the reciprocal of sin x i.e., (sin x)\(^{-1}\) = 1/sin x and it represents a pure number.

 Inverse Trigonometric Functions






11 and 12 Grade Math

From General solution of Trigonometric Equation to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Interpreting a Pictograph | Information Regarding the Pictograph |Math

    May 08, 24 09:23 AM

    Interpreting a pictograph
    In interpreting a pictograph, we get a lot of information regarding the pictograph items. The following examples may illustrate the interpretation of pictographs.

    Read More

  2. Pictograph to Represent The Collected Data | Forming Pictograph | Math

    May 07, 24 05:36 PM

    pictograph to represent the collected data
    Pictures or symbols are made in a pictograph to represent the collected data. So, we can say that a pictograph represents the data and gives information quickly and clearly.

    Read More

  3. Examples of Pictographs |Pictorial Representation|Pictograph Questions

    May 07, 24 05:27 PM

    Examples of Pictographs
    Some sample examples of pictographs or pictorial representation are shown, how the objects are used to give information regarding mathematical data. Read the pictograph and gather the information

    Read More

  4. Mental Math on Time | 4th Grade Time Worksheet | Tricks | Techniques

    May 07, 24 01:36 PM

    In mental math on time, we will solve different types of problems on reading time to the nearest minutes, reading time to the exact minutes, use of a.m. and p.m., 24-hours clock, days in a year and ca…

    Read More

  5. Telling Time in a.m. and p.m. | Antemeridian and Postmeridian|Examples

    May 06, 24 05:54 PM

    Expressing Time in a.m. and p.m.
    The clock shows time in 12 hour cycle. The first cycle of the hour hand completes at 12 o’clock midday or noon. The second cycle of the hour hand completes at 12 o’clock midnight. ‘a.m.’ and ‘p.m.’ ar…

    Read More