Inverse Trigonometric Functions

We will discuss here about Inverse trigonometric Functions or inverse circular functions.

The inverse of a function f: A B exists if and only if f is one-one onto (i.e., bijection) and given by

f(x) = y⇔ f\(^{-1}\) (y) = x.

Consider the sine function. Clearly, sin: R  R given by sin θ = x for all θ ∈ R is a many-one into function. So, its inverse does not exist. If we restrict its domain to the interval [- \(\frac{π}{2}\), \(\frac{π}{2}\)] then we may have infinitely many values of the angle θ which satisfy the equation sin θ = x i.e., sine of any one of these angles is equal to x. Here angle θ is represented as sin\(^{-1}\)x which is read as sine inverse x or arc sin x. Therefore, the symbol sin\(^{-1}\)x represents an angle and the sine of this angle has the value x.

Note the difference between sin\(^{-1}\)x and sin θ: sin\(^{-1}\)x represents an angle while sin θ represents a pure number; again, for a given value of x (- 1 ≤ x ≤ 1) we may have infinitely many vales of sin\(^{-1}\)x i.e., sin\(^{-1}\)x is a multiple-valued function; but a given value of θ gives a definite finite value of sin θ i.e., sin θ is a single-valued function. Thus, if x is a real number lying between -1 and 1, then sin\(^{-1}\) x is an angle between - \(\frac{π}{2}\) and \(\frac{π}{2}\) whose sine is x i.e.,

sin\(^{-1}\)x = θ

⇔ x = sin θ, where - \(\frac{π}{2}\)  ≤ x ≤ \(\frac{π}{2}\) and - 1 ≤ x ≤ 1.

In the above discussion we have restricted the sine function to the interval [- \(\frac{π}{2}\), \(\frac{π}{2}\)] to ake it a bijection. In fact we restrict the domain of sin θ to any of the interval [- \(\frac{π}{2}\), \(\frac{π}{2}\)], [\(\frac{3π}{2}\), \(\frac{5π}{2}\)], [- \(\frac{5π}{2}\), -\(\frac{3π}{2}\)] etc. sin θ is one-one onto function with range [-1, 1]. We therefore conclude that each of these intervals we can define the inverse of sine function. Thus sin\(^{-1}\)x is a function with domain [-1, 1] = {x ∈ R: - 1 ≤ x ≤ 1} and range [- \(\frac{π}{2}\), \(\frac{π}{2}\)] or [\(\frac{3π}{2}\), \(\frac{5π}{2}\)] or [- \(\frac{5π}{2}\), -\(\frac{3π}{2}\)] and so on.

Similarly, if cos θ = x (- 1 ≤ x ≤ 1 ) then θ = cos\(^{-1}\)x i.e., cos\(^{-1}\)x (cos-inverse x) represents an angle and the cosine of this angle is equal to x. We have similar significances of the angles tan\(^{-1}\)x (tan-inverse x), cot\(^{-1}\)x (cot-inverse x), sec\(^{-1}\)x (sec-inverse x) and csc\(^{-1}\)x (csc-inverse x).

Therefore, if sin θ = x (- 1 ≤ x ≤ 1) then θ = sin\(^{-1}\)x; 

if cos θ = x (- 1 ≤ x ≤ 1) then θ = cos\(^{-1}\)x ; 

if tan θ = x (- ∞ < x < ∞) then θ = tan\(^{-1}\)x ;

if csc θ = x (I x I ≥ 1) then θ = csc\(^{-1}\)x.

if sec θ = x (I x I ≥ 1) then θ = sec\(^{-1}\)x ; and

if cot θ = x (- ∞ < x < ∞) then θ = cot\(^{-1}\)x ;

Conversely, sin\(^{-1}\)x = θ ⇒ sin θ = x;

 cos\(^{-1}\)x = θ ⇒ cos θ = x

tan\(^{-1}\)x = θ ⇒ tan θ = x

csc\(^{-1}\)x = θ ⇒ csc θ = x

cot\(^{-1}\)x = θ ⇒ cot θ = x

The trigonometrical functions sin\(^{-1}\)x, cos\(^{-1}\)x, tan\(^{-1}\)x, cot\(^{-1}\)x, sec\(^{-1}\)x and csc\(^{-1}\)x are called Inverse Circular Functions.

Note: It should be noted that sin\(^{-1}\)x is not equal to (sin x)\(^{-1}\). Also noted that (sin x)\(^{-1}\)is an angle whose sin is x. Remember that sin\(^{-1}\)x is a circular function but (sin x )\(^{-1}\) is the reciprocal of sin x i.e., (sin x)\(^{-1}\) = 1/sin x and it represents a pure number.

 Inverse Trigonometric Functions






11 and 12 Grade Math

From General solution of Trigonometric Equation to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Shifting of Digits in a Number |Exchanging the Digits to Another Place

    May 19, 24 06:35 PM

    Shifting of Digits in a Number
    What is the Effect of shifting of digits in a number? Let us observe two numbers 1528 and 5182. We see that the digits are the same, but places are different in these two numbers. Thus, if the digits…

    Read More

  2. Formation of Greatest and Smallest Numbers | Arranging the Numbers

    May 19, 24 03:36 PM

    Formation of Greatest and Smallest Numbers
    the greatest number is formed by arranging the given digits in descending order and the smallest number by arranging them in ascending order. The position of the digit at the extreme left of a number…

    Read More

  3. Formation of Numbers with the Given Digits |Making Numbers with Digits

    May 19, 24 03:19 PM

    In formation of numbers with the given digits we may say that a number is an arranged group of digits. Numbers may be formed with or without the repetition of digits.

    Read More

  4. Arranging Numbers | Ascending Order | Descending Order |Compare Digits

    May 19, 24 02:23 PM

    Arranging Numbers
    We know, while arranging numbers from the smallest number to the largest number, then the numbers are arranged in ascending order. Vice-versa while arranging numbers from the largest number to the sma…

    Read More

  5. Comparison of Numbers | Compare Numbers Rules | Examples of Comparison

    May 19, 24 01:26 PM

    Rules for Comparison of Numbers
    Rule I: We know that a number with more digits is always greater than the number with less number of digits. Rule II: When the two numbers have the same number of digits, we start comparing the digits…

    Read More