# 2 arctan(x) = arctan($$\frac{2x}{1 - x^{2}}$$) = arcsin($$\frac{2x}{1 + x^{2}}$$) = arccos($$\frac{1 - x^{2}}{1 + x^{2}}$$)

We will learn how to prove the property of the inverse trigonometric function, 2 arctan(x) = arctan($$\frac{2x}{1 - x^{2}}$$) = arcsin($$\frac{2x}{1 + x^{2}}$$) = arccos($$\frac{1 - x^{2}}{1 + x^{2}}$$)

or, 2 tan$$^{-1}$$ x = tan$$^{-1}$$ ($$\frac{2x}{1 - x^{2}}$$) = sin$$^{-1}$$ ($$\frac{2x}{1 + x^{2}}$$) = cos$$^{-1}$$ ($$\frac{1 - x^{2}}{1 + x^{2}}$$)

Proof:

Let, tan$$^{-1}$$ x = θ

Therefore, tan θ = x

We know that,

tan 2θ = $$\frac{2 tan θ}{1 - tan^{2}θ}$$

tan 2θ = $$\frac{2x}{1 - x^{2}}$$

2θ = tan$$^{-1}$$($$\frac{2x}{1 - x^{2}}$$)

2 tan$$^{-1}$$ x = tan$$^{-1}$$($$\frac{2x}{1 - x^{2}}$$) …………………….. (i)

Again, sin 2θ = $$\frac{2 tan θ}{1 + tan^{2}θ}$$

sin 2θ = $$\frac{2x}{1 + x^{2}}$$

2θ = sin$$^{-1}$$($$\frac{2x}{1 + x^{2}}$$ )

2 tan$$^{-1}$$ x = sin$$^{-1}$$($$\frac{2x}{1 + x^{2}}$$) …………………….. (ii)

Now,  cos 2θ = $$\frac{1 - tan^{2}θ}{1 + tan^{2}θ}$$

cos 2θ =  $$\frac{1 - x^{2} }{1 + x^{2} }$$

2θ = cos$$^{-1}$$ ($$\frac{1 - x^{2} }{1 + x^{2} }$$)

2 tan$$^{-1}$$ x = cos ($$\frac{1 - x^{2} }{1 + x^{2} }$$) …………………….. (iii)

Therefore, from (i), (ii) and (iii) we get, 2 tan$$^{-1}$$ x = tan$$^{-1}$$ $$\frac{2x}{1 - x^{2}}$$ = sin$$^{-1}$$ $$\frac{2x}{1 + x^{2}}$$ = cos$$^{-1}$$ $$\frac{1 - x^{2}}{1 + x^{2}}$$                   Proved.

Solved examples on property of inverse circular function 2 arctan(x) = arctan($$\frac{2x}{1 - x^{2}}$$) = arcsin($$\frac{2x}{1 + x^{2}}$$) = arccos($$\frac{1 - x^{2}}{1 + x^{2}}$$):

1. Find the value of the inverse function tan(2 tan$$^{-1}$$ $$\frac{1}{5}$$).

Solution:

tan (2 tan$$^{-1}$$ $$\frac{1}{5}$$)

= tan (tan$$^{-1}$$ $$\frac{2 × \frac{1}{5}}{1 - (\frac{1}{5})^{2}}$$), [Since, we know that, 2 tan$$^{-1}$$ x = tan$$^{-1}$$($$\frac{2x}{1 - x^{2}}$$)]

= tan (tan$$^{-1}$$ $$\frac{\frac{2}{5}}{1 - \frac{1}{25}}$$)

= tan (tan$$^{-1}$$ $$\frac{5}{12}$$)

= $$\frac{5}{12}$$

2. Prove that, 4 tan$$^{-1}$$ $$\frac{1}{5}$$ - tan$$^{-1}$$ $$\frac{1}{70}$$ + tan$$^{-1}$$ $$\frac{1}{99}$$ = $$\frac{π}{4}$$

Solution:

L. H. S. = 4 tan$$^{-1}$$ $$\frac{1}{5}$$ - tan$$^{-1}$$ $$\frac{1}{70}$$ + tan$$^{-1}$$ $$\frac{1}{99}$$

= 2(2 tan$$^{-1}$$ $$\frac{1}{5}$$) - tan$$^{-1}$$ $$\frac{1}{70}$$ + tan$$^{-1}$$ $$\frac{1}{99}$$

= 2(tan$$^{-1}$$ $$\frac{2 × \frac{1}{5}}{1 - (\frac{1}{5})^{2}}$$) - tan$$^{-1}$$ $$\frac{1}{70}$$ + tan$$^{-1}$$ $$\frac{1}{99}$$, [Since, 2 tan$$^{-1}$$ x = tan$$^{-1}$$($$\frac{2x}{1 - x^{2}}$$)]

= 2 (tan$$^{-1}$$ $$\frac{2\frac{1}{5}}{1 - (\frac{1}{25})}$$)- tan$$^{-1}$$ $$\frac{1}{70}$$ + tan$$^{-1}$$ $$\frac{1}{99}$$,

= 2 tan$$^{-1}$$ $$\frac{5}{12}$$ - (tan$$^{-1}$$ $$\frac{1}{70}$$ - tan$$^{-1}$$ $$\frac{1}{99}$$)

= tan$$^{-1}$$ ($$\frac{2 × \frac{5}{12}}{1 - (\frac{5}{12})^{2}}$$) - tan$$^{-1}$$ ($$\frac{\frac{1}{70} - \frac{1}{99}}{1 + \frac{1}{77} × \frac{1}{99}}$$)

= tan$$^{-1}$$ $$\frac{120}{199}$$ - tan$$^{-1}$$ $$\frac{29}{6931}$$

= tan$$^{-1}$$ $$\frac{120}{199}$$ - tan$$^{-1}$$ $$\frac{1}{239}$$

= tan$$^{-1}$$ ($$\frac{\frac{120}{199} - \frac{1}{239}}{1 + \frac{120}{119} × \frac{1}{239}}$$)

= tan$$^{-1}$$ 1

= tan$$^{-1}$$ (tan $$\frac{π}{4}$$)

= $$\frac{π}{4}$$ = R. H. S.              Proved.

Inverse Trigonometric Functions

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

## Recent Articles

1. ### Arranging Numbers | Ascending Order | Descending Order |Compare Digits

Sep 15, 24 04:57 PM

We know, while arranging numbers from the smallest number to the largest number, then the numbers are arranged in ascending order. Vice-versa while arranging numbers from the largest number to the sma…

2. ### Counting Before, After and Between Numbers up to 10 | Number Counting

Sep 15, 24 04:08 PM

Counting before, after and between numbers up to 10 improves the child’s counting skills.

3. ### Comparison of Three-digit Numbers | Arrange 3-digit Numbers |Questions

Sep 15, 24 03:16 PM

What are the rules for the comparison of three-digit numbers? (i) The numbers having less than three digits are always smaller than the numbers having three digits as:

4. ### 2nd Grade Place Value | Definition | Explanation | Examples |Worksheet

Sep 14, 24 04:31 PM

The value of a digit in a given number depends on its place or position in the number. This value is called its place value.