Subscribe to our βΆοΈYouTube channelπ΄ for the latest videos, updates, and tips.
Home | About Us | Contact Us | Privacy | Math Blog
We will learn how to prove the property of the inverse trigonometric function, 2 arctan(x) = arctan(2x1βx2) = arcsin(2x1+x2) = arccos(1βx21+x2)
or, 2 tanβ1 x = tanβ1 (2x1βx2) = sinβ1 (2x1+x2) = cosβ1 (1βx21+x2)
Proof:
Let, tanβ1 x = ΞΈ
Therefore, tan ΞΈ = x
We know that,
tan 2ΞΈ = 2tanΞΈ1βtan2ΞΈ
tan 2ΞΈ = 2x1βx2
2ΞΈ
= tanβ1(2x1βx2)
2 tanβ1 x = tanβ1(2x1βx2) β¦β¦β¦β¦β¦β¦β¦β¦.. (i)
Again, sin 2ΞΈ = 2tanΞΈ1+tan2ΞΈ
sin 2ΞΈ = 2x1+x2
2ΞΈ = sinβ1(2x1+x2 )
2 tanβ1 x = sinβ1(2x1+x2) β¦β¦β¦β¦β¦β¦β¦β¦.. (ii)
Now, cos 2ΞΈ = 1βtan2ΞΈ1+tan2ΞΈ
cos 2ΞΈ = 1βx21+x2
2ΞΈ = cosβ1 (1βx21+x2)
2 tanβ1 x = cos (1βx21+x2) β¦β¦β¦β¦β¦β¦β¦β¦.. (iii)
Therefore, from (i), (ii) and (iii) we get, 2 tanβ1 x = tanβ1 2x1βx2 = sinβ1 2x1+x2 = cosβ1 1βx21+x2 Proved.
Solved examples on property of inverse circular function 2 arctan(x) = arctan(2x1βx2) = arcsin(2x1+x2) = arccos(1βx21+x2):
1. Find the value of the inverse function tan(2 tanβ1 15).
Solution:
tan (2 tanβ1 15)
= tan (tanβ1 2Γ151β(15)2), [Since, we know that, 2 tanβ1 x = tanβ1(2x1βx2)]
= tan (tanβ1 251β125)
= tan (tanβ1 512)
= 512
2. Prove that, 4 tanβ1 15 - tanβ1 170 + tanβ1 199 = Ο4
Solution:
L. H. S. = 4 tanβ1 15 - tanβ1 170 + tanβ1 199
= 2(2 tanβ1 15) - tanβ1 170 + tanβ1 199
= 2(tanβ1 2Γ151β(15)2) - tanβ1 170 + tanβ1 199, [Since, 2 tanβ1 x = tanβ1(2x1βx2)]
= 2 (tanβ1 2151β(125))- tanβ1 170 + tanβ1 199,
= 2 tanβ1 512 - (tanβ1 170 - tanβ1 199)
= tanβ1 (2Γ5121β(512)2) - tanβ1 (170β1991+177Γ199)
= tanβ1 120199 - tanβ1 296931
= tanβ1 120199 - tanβ1 1239
= tanβ1 (120199β12391+120119Γ1239)
= tanβ1 1
= tanβ1 (tan Ο4)
= Ο4 = R. H. S. Proved.
β Inverse Trigonometric Functions
11 and 12 Grade Math
From 2 arctan(x) to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.
Jul 18, 25 10:38 AM
Jul 17, 25 01:06 AM
Jul 17, 25 12:40 AM
Jul 16, 25 11:46 PM
Jul 16, 25 02:33 AM
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.