# arcsin (x) + arcsin(y) = arcsin (x $$\sqrt{1 - y^{2}}$$ + y$$\sqrt{1 - x^{2}}$$)

We will learn how to prove the property of the inverse trigonometric function arcsin (x) + arcsin(y) = arcsin (x $$\sqrt{1 - y^{2}}$$ + y$$\sqrt{1 - x^{2}}$$)

Proof:

Let, sin$$^{-1}$$ x = α and sin$$^{-1}$$ y = β

From sin$$^{-1}$$ x = α we get,

x = sin α

and from sin$$^{-1}$$ y = β we get,

y = sin β

Now, sin (α + β) = sin α cos β + cos α sin β

sin (α + β) = sin α $$\sqrt{1 - sin^{2} β}$$ + $$\sqrt{1 - sin^{2} α}$$ sin β

sin (α + β) = x ∙ $$\sqrt{1 - y^{2}}$$ + $$\sqrt{1 - x^{2}}$$ ∙ y

Therefore, α + β = sin$$^{-1}$$ (x $$\sqrt{1 - y^{2}}$$ + y$$\sqrt{1 - x^{2}}$$)

or, sin$$^{-1}$$ x + sin$$^{-1}$$ y = sin$$^{-1}$$ (x $$\sqrt{1 - y^{2}}$$ + y$$\sqrt{1 - x^{2}}$$).       Proved.

Note: If x > 0, y > 0 and x$$^{2}$$ + y$$^{2}$$ > 1, then the sin$$^{-1}$$ x + sin$$^{-1}$$ y may be an angle more than π/2 while sin$$^{-1}$$ (x $$\sqrt{1 - y^{2}}$$ + y$$\sqrt{1 - x^{2}}$$), is an angle between – π/2 and π/2.

Therefore, sin$$^{-1}$$ x + sin$$^{-1}$$ y = π - sin$$^{-1}$$ (x $$\sqrt{1 - y^{2}}$$ + y$$\sqrt{1 - x^{2}}$$)

1. Prove that sin$$^{-1}$$ $$\frac{3}{5}$$ + sin$$^{-1}$$ $$\frac{8}{17}$$ = sin$$^{-1}$$ $$\frac{77}{85}$$

Solution:

L. H. S. = sin$$^{-1}$$ $$\frac{3}{5}$$ + sin$$^{-1}$$ $$\frac{8}{17}$$

Now, we will apply the formula sin$$^{-1}$$ x + sin$$^{-1}$$ y = sin$$^{-1}$$ (x $$\sqrt{1 - y^{2}}$$ + y$$\sqrt{1 - x^{2}}$$)

= sin$$^{-1}$$ ($$\frac{3}{5}$$ $$\sqrt{1 - (\frac{8}{17})^{2}}$$ + $$\frac{8}{17}$$$$\sqrt{1 - (\frac{3}{5})^{2}}$$)

= sin$$^{-1}$$ ($$\frac{3}{5}$$ ×  $$\frac{15}{17}$$ + $$\frac{8}{17}$$ ×  $$\frac{4}{5}$$)

= sin$$^{-1}$$  $$\frac{77}{85}$$ = R. H. S.                  Proved.

2. Show that, sin$$^{-1}$$ $$\frac{4}{5}$$ + sin$$^{-1}$$ $$\frac{5}{13}$$ + sin$$^{-1}$$ $$\frac{16}{65}$$ = $$\frac{π}{2}$$.

Solution:

L. H. S. = (sin$$^{-1}$$$$\frac{4}{5}$$ + sin$$^{-1}$$$$\frac{5}{13}$$) + sin$$^{-1}$$$$\frac{16}{65}$$

Now, we will apply the formula sin$$^{-1}$$ x + sin$$^{-1}$$ y = sin$$^{-1}$$ (x$$\sqrt{1 - y^{2}}$$ + y$$\sqrt{1 - x^{2}}$$)

= sin$$^{-1}$$ ($$\frac{4}{5}$$ $$\sqrt{1 - (\frac{5}{13})^{2}}$$ + $$\frac{5}{13}$$$$\sqrt{1 - (\frac{4}{5})^{2}}$$ + sin$$^{-1}$$$$\frac{16}{65}$$

= sin$$^{-1}$$ ($$\frac{4}{5}$$ ×  $$\frac{12}{13}$$ + $$\frac{5}{13}$$ ×  $$\frac{3}{5}$$) + sin$$^{-1}$$$$\frac{16}{65}$$

= sin$$^{-1}$$ $$\frac{63}{65}$$ + sin$$^{-1}$$$$\frac{16}{65}$$

= sin$$^{-1}$$ $$\frac{63}{65}$$ + cos$$^{-1}$$$$\frac{63}{65}$$, [Since, sin$$^{-1}$$ $$\frac{16}{65}$$ = cos$$^{-1}$$ $$\frac{63}{65}$$]

= $$\frac{π}{2}$$, [Since, sin$$^{-1}$$ x + cos$$^{-1}$$ x = $$\frac{π}{2}$$] = R. H. S.            Proved.

Note: sin$$^{-1}$$ = arcsin (x)

Inverse Trigonometric Functions

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

## Recent Articles

1. ### Lines of Symmetry | Symmetry of Geometrical Figures | List of Examples

Aug 10, 24 03:27 PM

Learn about lines of symmetry in different geometrical shapes. It is not necessary that all the figures possess a line or lines of symmetry in different figures.

2. ### Symmetrical Shapes | One, Two, Three, Four & Many-line Symmetry

Aug 10, 24 02:25 AM

Symmetrical shapes are discussed here in this topic. Any object or shape which can be cut in two equal halves in such a way that both the parts are exactly the same is called symmetrical. The line whi…

Aug 10, 24 01:59 AM

In 6th grade math practice you will get all types of examples on different topics along with the step-by-step explanation of the solutions.

4. ### 6th Grade Algebra Worksheet | Pre-Algebra worksheets with Free Answers

Aug 10, 24 01:57 AM

In 6th Grade Algebra Worksheet you will get different types of questions on basic concept of algebra, questions on number pattern, dot pattern, number sequence pattern, pattern from matchsticks, conce…

5. ### Solution of an Equation | Trial and Error Method |Transposition Method

Aug 06, 24 02:12 AM

A solution of an equation is a value of the unknown variable that satisfy the equation. A number, which when substituted for the variable in an equation makes its L.H.S equal to the R.H.S, is said to…