Subscribe to our ▶️ YouTube channel 🔴 for the latest videos, updates, and tips.

arcsin(x) + arccos(x) = \(\frac{π}{2}\)

We will learn how to prove the property of the inverse trigonometric function arcsin(x) + arccos(x) = \(\frac{π}{2}\).

Proof: Let, sin\(^{-1}\) x = θ

Therefore, x = sin θ

x = cos (\(\frac{π}{2}\) - θ), [Since, cos (\(\frac{π}{2}\) - θ) = sin θ]

⇒ cos\(^{-1}\) x = \(\frac{π}{2}\) - θ

⇒ cos\(^{-1}\) x= \(\frac{π}{2}\) - sin\(^{-1}\) x, [Since, θ = sin\(^{-1}\) x]

⇒ sin\(^{-1}\) x + cos\(^{-1}\) x = \(\frac{π}{2}\)

Therefore, sin\(^{-1}\) x + cos\(^{-1}\) x = \(\frac{π}{2}\).             Proved.

Solved examples on property of inverse circular function sin\(^{-1}\) x + cos\(^{-1}\) x = \(\frac{π}{2}\).

1. Prove that sin\(^{-1}\) \(\frac{4}{5}\) + sin\(^{-1}\) \(\frac{5}{13}\) + sin\(^{-1}\) \(\frac{16}{65}\) = \(\frac{π}{2}\)

Solution:

sin\(^{-1}\) \(\frac{4}{5}\) + sin\(^{-1}\) \(\frac{5}{13}\) + sin\(^{-1}\) \(\frac{16}{65}\)

= (sin\(^{-1}\) \(\frac{4}{5}\) + sin\(^{-1}\) \(\frac{5}{13}\)) + sin\(^{-1}\) \(\frac{16}{65}\)

= \(sin^{-1}(\frac{4}{5}\sqrt{1 - (\frac{5}{13})^{2}}) + \frac{5}{13}\sqrt{1 - (\frac{4}{5})^{2}})\) + sin\(^{-1}\) \(\frac{16}{65}\)

= sin\(^{-1}\) (\(\frac{4}{5}\) × \(\frac{12}{13}\) + \(\frac{5}{13}\) × \(\frac{3}{5}\)) + sin\(^{-1}\) \(\frac{16}{65}\)

= sin\(^{-1}\) \(\frac{63}{65}\) + sin\(^{-1}\) \(\frac{16}{65}\)

= \(cos^{-1}\sqrt{1 - (\frac{63}{65})^{2}})\) + sin\(^{-1}\) \(\frac{16}{65}\)

= cos\(^{-1}\) \(\frac{16}{65}\) + sin\(^{-1}\) \(\frac{16}{65}\)

= π/2, since \(sin^{-1} x + cos^{-1} x = \frac{π}{2}\)

Therefore, sin\(^{-1}\) \(\frac{4}{5}\) + sin\(^{-1}\) \(\frac{5}{13}\) + sin\(^{-1}\) \(\frac{16}{65}\) = \(\frac{π}{2}\).                  Proved.

 

2. Solve the trigonometric equation: sin\(^{-1}\) \(\frac{5}{x}\) + sin\(^{-1}\) \(\frac{12}{x}\) = \(\frac{π}{2}\)

Solution:

sin\(^{-1}\) \(\frac{5}{x}\) + sin\(^{-1}\) \(\frac{12}{x}\) = \(\frac{π}{2}\)

⇒ sin\(^{-1}\) \(\frac{12}{x}\) = \(\frac{π}{2}\) - sin\(^{-1}\) \(\frac{5}{x}\)

⇒ sin\(^{-1}\) \(\frac{12}{x}\) = cos\(^{-1}\) \(\frac{5}{x}\), [Since, we know that, sin\(^{-1}\) \(\frac{5}{x}\) + cos\(^{-1}\) \(\frac{5}{x}\) = \(\frac{π}{2}\)]

⇒ sin\(^{-1}\) \(\frac{12}{x}\) = sin\(^{-1}\) \(\frac{\sqrt{x^{2} - 25}}{x}\)

⇒ \(\frac{12}{x}\) = \(\frac{\sqrt{x^{2} - 25}}{x}\)

⇒ \(\sqrt{x^{2} - 25}\) = 12, [Since, x ≠ 0]

⇒ x\(^{2}\) - 25 = 144       

⇒ x\(^{2}\) = 144 + 25   

⇒ x\(^{2}\) = 169        

⇒ x = ± 13

The solution x = - 13 does not satisfy the given equation. 

Therefore the required solution is x = 13.

 Inverse Trigonometric Functions








11 and 12 Grade Math

From arcsin x + arccos x = π/2 to HOME PAGE


Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.