Subscribe to our YouTube channel for the latest videos, updates, and tips.
Home | About Us | Contact Us | Privacy | Math Blog
We will learn how to prove the property of the inverse trigonometric function arccos (x) + arccos(y) = arccos(xy - \(\sqrt{1 - x^{2}}\)\(\sqrt{1 - y^{2}}\))
Proof:
Let, cos\(^{-1}\) x = α and cos\(^{-1}\) y = β
From cos\(^{-1}\) x = α we get,
x = cos α
and from cos\(^{-1}\) y = β we get,
y = cos β
Now, cos (α
+ β) = cos α cos β - sin α sin β
⇒ cos (α + β) = cos α cos β - \(\sqrt{1 - cos^{2} α}\) \(\sqrt{1 - cos^{2} β}\)
⇒ cos (α + β) = (xy - \(\sqrt{1 - x^{2}}\)\(\sqrt{1 - y^{2}}\))
⇒ α + β = cos\(^{-1}\)(xy - \(\sqrt{1 - x^{2}}\)\(\sqrt{1 - y^{2}}\))
⇒ or, cos\(^{-1}\) x - cos\(^{-1}\) y = cos\(^{-1}\)(xy - \(\sqrt{1 - x^{2}}\)\(\sqrt{1 - y^{2}}\))
Therefore, arccos (x) + arccos(y) = arccos(xy - \(\sqrt{1 - x^{2}}\)\(\sqrt{1 - y^{2}}\)) Proved.
Note: If x > 0, y > 0 and x\(^{2}\) + y\(^{2}\) > 1, then the cos\(^{-1}\) x + sin\(^{-1}\) y may be an angle more than π/2 while cos\(^{-1}\)(xy - \(\sqrt{1 - x^{2}}\)\(\sqrt{1 - y^{2}}\)), is an angle between – π/2 and π/2.
Therefore, cos\(^{-1}\) x + cos\(^{-1}\) y = π - cos\(^{-1}\)(xy - \(\sqrt{1 - x^{2}}\)\(\sqrt{1 - y^{2}}\))
Solved examples on property of inverse circular function arccos (x) + arccos(y) = arccos(xy - \(\sqrt{1 - x^{2}}\)\(\sqrt{1 - y^{2}}\))
1. If cos\(^{-1}\)\(\frac{x}{a}\) + cos\(^{-1}\)\(\frac{y}{b}\) = α prove that,
\(\frac{x^{2}}{a^{2}}\) - \(\frac{2xy}{ab}\) cos α + \(\frac{y^{2}}{b^{2}}\) = sin\(^{2}\) α.
Solution:
L. H. S. = cos\(^{-1}\)\(\frac{x}{a}\) + cos\(^{-1}\)\(\frac{y}{b}\) = α
We have, cos\(^{-1}\) x - cos\(^{-1}\) y = cos\(^{-1}\)(xy - \(\sqrt{1 - x^{2}}\)\(\sqrt{1 - y^{2}}\))
⇒ cos\(^{-1}\) [\(\frac{x}{a}\) · \(\frac{y}{b}\) - \(\sqrt{1 - \frac{x^{2}}{a^{2}}}\) \(\sqrt{1 - \frac{y^{2}}{b^{2}}}\)] = α
⇒ \(\frac{xy}{ab}\) - \(\sqrt{(1 - \frac{x^{2}}{a^{2}})(1 - \frac{y^{2}}{b^{2}})}\) = cos α
⇒ \(\frac{xy}{ab}\) - cos α = \(\sqrt{(1 - \frac{x^{2}}{a^{2}})(1 - \frac{y^{2}}{b^{2}})}\)
⇒ (\(\frac{xy}{ab}\) - cos α)\(^{2}\) = \((1 - \frac{x^{2}}{a^{2}})(1 - \frac{y^{2}}{b^{2}})\), (squaring both the sides)
⇒ \(\frac{x^{2}y^{2}}{a^{2}b^{2}}\) - 2\(\frac{xy}{ab}\)cos α + cos\(^{2}\) α = 1 - \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) + \(\frac{x^{2}y^{2}}{a^{2}b^{2}}\)
⇒ \(\frac{x^{2}}{a^{2}}\) - - 2\(\frac{xy}{ab}\)cos α + cos\(^{2}\) α + \(\frac{y^{2}}{b^{2}}\) = 1 - cos\(^{2}\) α
⇒ \(\frac{x^{2}}{a^{2}}\) - - 2\(\frac{xy}{ab}\)cos α + cos\(^{2}\) α + \(\frac{y^{2}}{b^{2}}\) = sin\(^{2}\) α. Proved.
2. If cos\(^{-1}\) x + cos\(^{-1}\) y + cos\(^{-1}\) z = π, prove that x\(^{2}\) + y\(^{2}\) + z\(^{2}\) + 2xyz = 1.
Solution:
cos\(^{-1}\) x + cos\(^{-1}\) y + cos\(^{-1}\) z = π
⇒ cos\(^{-1}\) x + cos\(^{-1}\) y = π - cos\(^{-1}\) z
⇒ cos\(^{-1}\) x + cos\(^{-1}\) y = cos\(^{-1}\) (-z), [Since, cos\(^{-1}\) (-θ) = π - cos\(^{-1}\) θ]
⇒ cos\(^{-1}\)(xy - \(\sqrt{1 - x^{2}}\)\(\sqrt{1 - y^{2}}\)) = cos\(^{-1}\) (-z)
⇒ xy - \(\sqrt{1 - x^{2}}\)\(\sqrt{1 - y^{2}}\) = -z
⇒ xy + z = \(\sqrt{1 - x^{2}}\)\(\sqrt{1 - y^{2}}\)
Now squaring both sides
⇒ (xy + z)\(^{2}\) = (1 - x\(^{2}\))(1 - y\(^{2}\))
⇒ x\(^{2}\)y\(^{2}\) + z\(^{2}\) + 2xyz = 1 - x\(^{2}\) - y\(^{2}\) + x\(^{2}\)y\(^{2}\)
⇒ x\(^{2}\) + y\(^{2}\) + z\(^{2}\) + 2xyz = 1 Proved.
● Inverse Trigonometric Functions
11 and 12 Grade Math
From arccos(x) + arccos(y) to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.
Jul 11, 25 02:14 PM
Jul 09, 25 01:29 AM
Jul 08, 25 02:32 PM
Jul 08, 25 02:23 PM
Jul 08, 25 09:55 AM
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.