Loading [MathJax]/jax/output/HTML-CSS/jax.js

Subscribe to our ▢️ YouTube channel πŸ”΄ for the latest videos, updates, and tips.

arccos (x) + arccos(y) = arccos(xy - √1βˆ’x2√1βˆ’y2)

We will learn how to prove the property of the inverse trigonometric function arccos (x) + arccos(y) = arccos(xy - √1βˆ’x2√1βˆ’y2)

Proof:  

Let, cosβˆ’1 x = Ξ± and cosβˆ’1 y = Ξ²

From cosβˆ’1 x = Ξ± we get,

x = cos Ξ±

and from cosβˆ’1 y = Ξ² we get,

y = cos Ξ²

Now, cos (Ξ± + Ξ²) = cos Ξ± cos Ξ² - sin Ξ± sin Ξ²

β‡’ cos (Ξ± + Ξ²) = cos Ξ± cos Ξ² - √1βˆ’cos2Ξ± √1βˆ’cos2Ξ²

β‡’ cos (Ξ± + Ξ²) = (xy - √1βˆ’x2√1βˆ’y2)

β‡’ Ξ± + Ξ² = cosβˆ’1(xy - √1βˆ’x2√1βˆ’y2)

β‡’ or, cosβˆ’1 x - cosβˆ’1 y = cosβˆ’1(xy - √1βˆ’x2√1βˆ’y2)

Therefore, arccos (x) + arccos(y) = arccos(xy - √1βˆ’x2√1βˆ’y2)             Proved.

 

Note: If x > 0, y > 0 and x2 + y2 > 1, then the cosβˆ’1 x + sinβˆ’1 y may be an angle more than Ο€/2 while cosβˆ’1(xy - √1βˆ’x2√1βˆ’y2), is an angle between – Ο€/2 and Ο€/2.

Therefore, cosβˆ’1 x + cosβˆ’1 y = Ο€ - cosβˆ’1(xy - √1βˆ’x2√1βˆ’y2)


Solved examples on property of inverse circular function arccos (x) + arccos(y) = arccos(xy - √1βˆ’x2√1βˆ’y2)

1. If cosβˆ’1xa + cosβˆ’1yb = Ξ± prove that,

x2a2 - 2xyab cos Ξ± + y2b2 = sin2 Ξ±.                        

Solution:  

L. H. S. = cosβˆ’1xa + cosβˆ’1yb = Ξ±

We have, cosβˆ’1 x - cosβˆ’1 y = cosβˆ’1(xy - √1βˆ’x2√1βˆ’y2)

β‡’ cosβˆ’1 [xa Β· yb - √1βˆ’x2a2 √1βˆ’y2b2] = Ξ±

β‡’ xyab - √(1βˆ’x2a2)(1βˆ’y2b2) = cos Ξ±

β‡’ xyab - cos Ξ± = √(1βˆ’x2a2)(1βˆ’y2b2)

β‡’ (xyab - cos Ξ±)2 = (1βˆ’x2a2)(1βˆ’y2b2), (squaring both the sides)

β‡’ x2y2a2b2  - 2xyabcos Ξ± + cos2 Ξ± = 1 - x2a2 - y2b2 +  x2y2a2b2

β‡’ x2a2 - - 2xyabcos Ξ± + cos2 Ξ± + y2b2 = 1 - cos2 Ξ±

β‡’ x2a2 - - 2xyabcos Ξ± + cos2 Ξ± + y2b2 = sin2 Ξ±.            Proved.

 

2. If cosβˆ’1 x + cosβˆ’1 y + cosβˆ’1 z = Ο€, prove that x2 + y2 + z2 + 2xyz = 1.

Solution:

cosβˆ’1 x + cosβˆ’1 y + cosβˆ’1 z = Ο€

β‡’ cosβˆ’1 x + cosβˆ’1 y = Ο€ - cosβˆ’1 z

β‡’ cosβˆ’1 x + cosβˆ’1 y = cosβˆ’1 (-z), [Since, cosβˆ’1 (-ΞΈ) = Ο€ - cosβˆ’1 ΞΈ]

β‡’ cosβˆ’1(xy - √1βˆ’x2√1βˆ’y2) = cosβˆ’1 (-z)

β‡’ xy - √1βˆ’x2√1βˆ’y2 = -z

β‡’ xy + z = √1βˆ’x2√1βˆ’y2

Now squaring both sides

β‡’ (xy + z)2 = (1 - x2)(1 - y2)

β‡’ x2y2 + z2 + 2xyz = 1 - x2 - y2 + x2y2

β‡’ x2 + y2 + z2 + 2xyz = 1                Proved.

● Inverse Trigonometric Functions






11 and 12 Grade Math

From arccos(x) + arccos(y) to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?