General and Principal Values of sin\(^{-1}\) x

What are the general and principal Values of sin\(^{-1}\) x?

What is sin\(^{-1}\) ½?

We know that sin (30°) = ½.

⇒ sin\(^{-1}\) (1/2) = 30° or \(\frac{π}{6}\).

Again, sin θ = sin (π - \(\frac{π}{6}\))

⇒ sin θ = sin (\(\frac{5π}{6}\))

⇒ θ = \(\frac{5π}{6}\)or 150°

Again, sin θ = 1/2

⇒ sin θ = sin \(\frac{π}{6}\)

⇒ sin θ = sin (2π + \(\frac{π}{6}\))

⇒ sin θ = sin (\(\frac{13π}{6}\))

⇒ θ = \(\frac{13π}{6}\) or 390°

Therefore, sin (30°) = sin (150°) = sin (390°) and so on, and, sin (30°) = sin (150°) = sin (390°) = ½.

In other ward we can say that,

sin (30° + 360° n) = sin (150° + 360° n) = ½, where, where n = 0, ± 1, ± 2, ± 3, …….

And in general, if sin θ = ½ = sin \(\frac{π}{6}\) then θ = nπ + (- 1)\(^{n}\) \(\frac{π}{6}\), where n = 0 or any integer.

Therefore, if sin θ = 1/2 then θ = sin\(^{-1}\) ½ = \(\frac{π}{6}\) or \(\frac{5π}{6}\) or \(\frac{13π}{6}\)

Therefore in general, sin\(^{-1}\)  (½) = θ = nπ + (-1) \(^{n}\) \(\frac{π}{6}\) and the angle nπ + (- 1)\(^{n}\) \(\frac{π}{6}\) is called the general value of sin\(^{-1}\) ½.

The positive or negative least numerical value of the angle is called the principal value

In this case the \(\frac{π}{6}\) is the least positive angle. Therefore, the principal value of sin\(^{-1}\) ½ is \(\frac{π}{6}\).

Let sin θ = x and - 1 ≤ x ≤ 1

x ⇒ sin {nπ + (- 1)\(^{n}\) θ}, where n = 0, ± 1, ± 2, ± 3, …….

Therefore, sin\(^{-1}\) x = nπ + (- 1)\(^{n}\) θ, where n = 0, ± 1, ± 2, ± 3, …….

For the above equation we can say that sin\(^{-1}\) x may have infinitely many values.

Let – \(\frac{π}{2}\) ≤ α ≤ \(\frac{π}{2}\), where α is positive or negative smallest numerical value and satisfies the equation sin θ = x then the angle α is called the principal value of sin\(^{-1}\) x.

Therefore, the general value of sin\(^{-1}\) x is nπ + (- 1)\(^{n}\) θ, where n = 0, ± 1, ± 2, ± 3, …….

The principal value of sin\(^{-1}\) x is α, where - \(\frac{π}{2}\) ≤ α ≤ \(\frac{π}{2}\) and α satisfies the equation sin θ = x.

For example, principal value of sin\(^{-1}\) (-\(\frac{√3}{2}\)) is -\(\frac{π}{3}\)and its general value is nπ + (- 1)\(^{n}\) ∙ (-\(\frac{π}{3}\)) = nπ - (- 1)\(^{n}\) ∙ \(\frac{π}{3}\). 

Similarly, principal value of sin\(^{-1}\) (\(\frac{√3}{2}\)) is (\(\frac{π}{3}\)) and its general value is nπ + (- 1)\(^{n}\) (\(\frac{π}{3}\)) = nπ - (- 1)\(^{n}\) ∙ \(\frac{π}{6}\). 

 Inverse Trigonometric Functions







11 and 12 Grade Math

From General and Principal Values of arc sin x  to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Types of Fractions |Proper Fraction |Improper Fraction |Mixed Fraction

    Mar 02, 24 05:31 PM

    Fractions
    The three types of fractions are : Proper fraction, Improper fraction, Mixed fraction, Proper fraction: Fractions whose numerators are less than the denominators are called proper fractions. (Numerato…

    Read More

  2. Subtraction of Fractions having the Same Denominator | Like Fractions

    Mar 02, 24 04:36 PM

    Subtraction of Fractions having the Same Denominator
    To find the difference between like fractions we subtract the smaller numerator from the greater numerator. In subtraction of fractions having the same denominator, we just need to subtract the numera…

    Read More

  3. Addition of Like Fractions | Examples | Worksheet | Answer | Fractions

    Mar 02, 24 03:32 PM

    Adding Like Fractions
    To add two or more like fractions we simplify add their numerators. The denominator remains same. Thus, to add the fractions with the same denominator, we simply add their numerators and write the com…

    Read More

  4. Comparison of Unlike Fractions | Compare Unlike Fractions | Examples

    Mar 01, 24 01:42 PM

    Comparison of Unlike Fractions
    In comparison of unlike fractions, we change the unlike fractions to like fractions and then compare. To compare two fractions with different numerators and different denominators, we multiply by a nu…

    Read More

  5. Equivalent Fractions | Fractions |Reduced to the Lowest Term |Examples

    Feb 29, 24 05:12 PM

    Equivalent Fractions
    The fractions having the same value are called equivalent fractions. Their numerator and denominator can be different but, they represent the same part of a whole. We can see the shade portion with re…

    Read More