# Distance between Two Points

Here we will discuss about distance between two points.

How to find the distance between two given points?

Or,

How to find the length of the line segment joining two given points?

(A) To find the distance of a given point from the origin:

Let OX and OYbe the rectangular Cartesian Co-ordinates axes on the plane of reference and the Co-ordinates of a point P on the plane be (x, y). to find the distance of P from the origin O. from P draw PM perpendicular on OX; then , OM = x and PM = y. Now from the right angle triangle OPM we get,

OP² = OM² + PM² = x² + y²

Therefore OP = √(x² + y²) (Since, OP is positive.)

(B) To find the distance between two points whose rectangular Cartesian co-ordinates are given:

Let (x₁, y₁) and (x₂, y₂) be the Cartesian co-ordinates of the points P and Q respectively referred to rectangular co-ordinate axes OX and OY. We are to find the distance between the points P and Q. Draw PM and QN perpendiculars from P and Q respectively on OX; then draw PR perpendicular from P on QN.

Clearly, OM = x₁, PM = y₁, ON = x₂ and QN = y₂.

Now, PR = MN = ON - OM = x₂ – x₁
and QR = QN - RN = QN - PM = y₂ – y₁

Therefore, from the right-angled triangle PQR we get,

PQ² = PR² + QR² = (x₂ - x₁)² + ( y₂ - y₁)²

Therefore, PQ = √[(x₂ - x₁)² + (y₂ - y₁)²] (Since, PQ is positive )∙

Examples on Distance between two Points

1. Find the distance of the point (-5, 12) from the origin.

Solution:

We know that, the distance between two given points (x₁, y₁) and (x₂, y₂) is

√{(x₂ - x₁)² + (y₂ - y₁)²}.

The required distance of the point (- 5, 12) from the origin = the distance between the points (- 5, 12) and (0, 0)

= √{(- 5 - 0)² + (12 - 0)²}

= √(25 + 144)

= √169

= 13 units.

2. Find the distance between the points (- 2, 5) and (2, 2).

Solution:

We know that, the distance between two given points (x₁, y₁) and (x₂, y₂) is

√{(x₂ - x₁)² + (y₂ - y₁)²}.

The required distance between the given points (- 2, 5) and (2, 2)

= √{(2 + 2)² + (2 - 5)²}

= √(16 + 9)

= √25

= 5 units.

Co-ordinate Geometry

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

## Recent Articles

1. ### Method of H.C.F. |Highest Common Factor|Factorization &Division Method

Apr 13, 24 05:12 PM

We will discuss here about the method of h.c.f. (highest common factor). The highest common factor or HCF of two or more numbers is the greatest number which divides exactly the given numbers. Let us…

2. ### Factors | Understand the Factors of the Product | Concept of Factors

Apr 13, 24 03:29 PM

Factors of a number are discussed here so that students can understand the factors of the product. What are factors? (i) If a dividend, when divided by a divisor, is divided completely

3. ### Methods of Prime Factorization | Division Method | Factor Tree Method

Apr 13, 24 01:27 PM

In prime factorization, we factorise the numbers into prime numbers, called prime factors. There are two methods of prime factorization: 1. Division Method 2. Factor Tree Method

4. ### Divisibility Rules | Divisibility Test|Divisibility Rules From 2 to 18

Apr 13, 24 12:41 PM

To find out factors of larger numbers quickly, we perform divisibility test. There are certain rules to check divisibility of numbers. Divisibility tests of a given number by any of the number 2, 3, 4…