Distance between Two Points

Here we will discuss about distance between two points.


How to find the distance between two given points?

Or,

How to find the length of the line segment joining two given points?

(A) To find the distance of a given point from the origin:

Distance between Two Points

Let OX and OYbe the rectangular Cartesian Co-ordinates axes on the plane of reference and the Co-ordinates of a point P on the plane be (x, y). to find the distance of P from the origin O. from P draw PM perpendicular on OX; then , OM = x and PM = y. Now from the right angle triangle OPM we get,

OP² = OM² + PM² = x² + y²

Therefore OP = √(x² + y²) (Since, OP is positive.)


(B) To find the distance between two points whose rectangular Cartesian co-ordinates are given:

find the distance between two points


Let (x₁, y₁) and (x₂, y₂) be the Cartesian co-ordinates of the points P and Q respectively referred to rectangular co-ordinate axes OX and OY. We are to find the distance between the points P and Q. Draw PM and QN perpendiculars from P and Q respectively on OX; then draw PR perpendicular from P on QN.

Clearly, OM = x₁, PM = y₁, ON = x₂ and QN = y₂.

Now, PR = MN = ON - OM = x₂ – x₁
and QR = QN - RN = QN - PM = y₂ – y₁

Therefore, from the right-angled triangle PQR we get,

PQ² = PR² + QR² = (x₂ - x₁)² + ( y₂ - y₁)²

Therefore, PQ = √[(x₂ - x₁)² + (y₂ - y₁)²] (Since, PQ is positive )∙

Examples on Distance between two Points

1. Find the distance of the point (-5, 12) from the origin.

Solution:

We know that, the distance between two given points (x₁, y₁) and (x₂, y₂) is

√{(x₂ - x₁)² + (y₂ - y₁)²}.



The required distance of the point (- 5, 12) from the origin = the distance between the points (- 5, 12) and (0, 0)

      = √{(- 5 - 0)² + (12 - 0)²}

      = √(25 + 144)

      = √169

      = 13 units.



2. Find the distance between the points (- 2, 5) and (2, 2).

Solution:

We know that, the distance between two given points (x₁, y₁) and (x₂, y₂) is

√{(x₂ - x₁)² + (y₂ - y₁)²}.



The required distance between the given points (- 2, 5) and (2, 2)

      = √{(2 + 2)² + (2 - 5)²} 

      = √(16 + 9)

      = √25

      = 5 units.








 Co-ordinate Geometry 





11 and 12 Grade Math 

From Distance between Two Points to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 11, 24 09:08 AM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  2. Types of Lines |Straight Lines|Curved Lines|Horizontal Lines| Vertical

    Dec 09, 24 10:39 PM

    Types of Lines
    What are the different types of lines? There are two different kinds of lines. (i) Straight line and (ii) Curved line. There are three different types of straight lines. (i) Horizontal lines, (ii) Ver…

    Read More

  3. Points and Line Segment | Two Points in a Curved Surface | Curve Line

    Dec 09, 24 01:08 AM

    Curved Lines and Straight Line
    We will discuss here about points and line segment. We know when two lines meet we get a point. When two points on a plane surface are joined, a straight line segment is obtained.

    Read More

  4. Solid Shapes | Basic Geometric Shapes | Common Solid Figures | Plane

    Dec 08, 24 11:19 PM

    Solid Shapes
    We will discuss about basic solid shapes. We see a variety of solid objects in our surroundings. Solid objects have one or more shapes like the following. Match the objects with similar shape.

    Read More

  5. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 07, 24 03:38 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More