Problems on Distance Between Two Points

Solving the problems on distance between two points with the help of the formula, in the below examples use the formula to find distance between two points.

Worked-out problems on distance between two points:

1. Show that the points (3, 0), (6, 4) and (- 1, 3 ) are the vertices of a right-angled Isosceles triangle. 

Solution:
 Let the given points be A(3, 0), B (6, 4) and C (-1, 3). Then we have, 

AB² = (6 - 3)² + (4 - 0)² = 9 + 16 = 25; 

BC² = (-1 - 6)² + (3 - 4 )² = 49 + 1= 50 

and CA² = (3 + 1)² + (0 - 3)² = 16 + 9= 25. 

From the above results we get, 

AB² = CA² i.e., AB = CA, 

which proves that the triangle ABC is isosceles. 

Again, AB² + AC² = 25 + 25 = 50 = BC² 

which shows that the triangle ABC is right-angled. 

Therefore, the triangle formed by joining the given points is a right-angled isosceles triangle. Proved


2. If the three points (a, b), (a + k cos α, b + k sin α) and (a + k cos β, b + k sin β) are the vertices of an equilateral triangle, then which of the following is true and why ? 

(i) | α - β| = π/4

(ii) |α - β| = π/2

(iii) |α - β| = π/6

(iv) |α - β| = π/3

Solution:

Let the vertices of the triangle be A (a, b), B (a + k cos α, b + k sin α) and C (a + k cos β, b + k sin β).

Now, AB² = (a + k cos α - a)² + (b + k sin α - b)²

= k² cos² α + k² sin² α = k²;

Similarly, CA² = k² and

BC² = (a + k cos β - a - k cos α)² + (b + k sin β - b - k sin α)²

= k² (cos² β + cos² α - 2 cos α cos β + sin² β + sin² α - 2 sin α sin β)

= k² [cos² β + sin² β + cos² α + sin² α - 2(cos α cos β + sin α sin β)]

= k² [1 + 1 - 2 cos (α - β)]

= 2k² [1 - cos (α - β)]

Since ABC is an equilateral triangle, hence

AB² = BC²

or, k² = 2k² [1 - cos (α - β)]

or, 1/2 = 1 - cos(α - β) [since, k # 0]

or, cos (α - β) = 1/2 = cos π/3

Therefore, |α - β| = π/3 .

There for, condition (iv) is true.



3. Find the point on the y-axis which is equidistant from the points (2, 3)and(-1, 2).

Solution:

Let P(0, y) be the required point on the y-axis and the given points are A (2, 3) and B(- 1, 2). By question,

PA = PB = PA² = PB²

or, (2 - 0)² + (3 - y)² = (-1 - 0)² + (2 – y)²

or, 4 + 9 + y² - 6y = 1 + 4 + y² - 4y

or, - 6y + 4y = 1 - 9 or, - 2y = -8

or, y = 4.

Therefore, the required point on the y-axis is (0, 4).

4. Find the circum-centre and circum-radius of the triangle whose vertices are (3, 4), (3, - 6) and (- 1, 2). 


Solution:
 

Let A(3, 4), B (3, - 6), C (- 1, 2) be the vertices of the triangle and P(x, y ) the required circum-centre and r the circum-radius. Then, we must have, 

r² = PA² = (x - 3)² + (y - 4)² ……………………..(1) 

r² = PB² = (x - 3)² + (y + 6)² ……………………….(2) 

and r² = PC² = (x + 1)² + (y - 2)² ……………………….(3) 

From (1) and (2) we get, 

(x - 3)² + (y - 4)² = (x - 3)² + (y + 6)² 

Or, y² - 8y + 16 = y² + 12y + 36 

or, - 20y = 20 or, y = - 1 

Again, from (2) and (3) we get, 

(x - 3)² + (y + 6)² = (x + 1 )² + (y - 2)²

or, x² - 6x + 9 + 25 = x² + 2x + 1 + 9 [putting y = - 1] 

or, - 8x = - 24 

or, x = 3 

Finally, putting x = 3 and y = - 1 in (1) we get, 

r² = 0² + (-1 - 4)² = 25 

Therefore, r = 5 

Therefore, the co-ordinates of circum-centre are (3, - 1) and circum-radius = 5 units. 



5. Show that the four points (2, 5), (5, 9), (9, 12) and (6, 8) when joined in order, form a rhombus. 

Solution:
 

Let the given points be A(2, 5), B (5, 9), C (9, 12) and D(6, 8). Now, AB² = (5 - 2)² + (9 - 5)² = 9 + 16 = 25

BC² = (9 - 5)² + (12 - 9)² = 16 + 9 = 25

CD² = (6 - 9)² (8 - 12)² = 9 + 16 = 25

DA² = (2 - 6)² + (5 - 8)² = 16 + 9 = 25

AC² = ( 9 - 2)² + (12 - 5)² = 49 + 49 = 98

and BD² = (6 - 5)² + (8 - 9)² = 1 + 1 = 2

From the above result we see that

AB = BC = CD = DA and AC ≠ BD

That is the four sides of the quadrilateral ABCD are equal but diagonals AC and BD are not equal. Therefore, the quadrilateral ABCD is a rhombus. Proved.

The above worked-out problems on distance between two points are explained step-by-step with the help of the formula.

 Co-ordinate Geometry 




11 and 12 Grade Math 

From Problems on Distance Between Two Points to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 14, 24 02:12 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  2. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 14, 24 12:25 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  3. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    Dec 13, 24 08:43 AM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  4. Patterns in Math | Missing Number | Counting Numbers | Worksheets

    Dec 13, 24 12:31 AM

    Finding patterns in math is very important to understand the sequence in the series. We need to find the exact missing number that from the group of numbers. The counting numbers may be counting

    Read More

  5. Concept of Pattern | Similar Patterns in Mathematics | Similar Pattern

    Dec 12, 24 11:22 PM

    Patterns in Necklace
    Concept of pattern will help us to learn the basic number patterns and table patterns. Animals such as all cows, all lions, all dogs and all other animals have dissimilar features. All mangoes have si…

    Read More