Subscribe to our YouTube channel for the latest videos, updates, and tips.


Problems on Distance Between Two Points

Solving the problems on distance between two points with the help of the formula, in the below examples use the formula to find distance between two points.

Worked-out problems on distance between two points:

1. Show that the points (3, 0), (6, 4) and (- 1, 3 ) are the vertices of a right-angled Isosceles triangle. 

Solution:
 Let the given points be A(3, 0), B (6, 4) and C (-1, 3). Then we have, 

AB² = (6 - 3)² + (4 - 0)² = 9 + 16 = 25; 

BC² = (-1 - 6)² + (3 - 4 )² = 49 + 1= 50 

and CA² = (3 + 1)² + (0 - 3)² = 16 + 9= 25. 

From the above results we get, 

AB² = CA² i.e., AB = CA, 

which proves that the triangle ABC is isosceles. 

Again, AB² + AC² = 25 + 25 = 50 = BC² 

which shows that the triangle ABC is right-angled. 

Therefore, the triangle formed by joining the given points is a right-angled isosceles triangle. Proved


2. If the three points (a, b), (a + k cos α, b + k sin α) and (a + k cos β, b + k sin β) are the vertices of an equilateral triangle, then which of the following is true and why ? 

(i) | α - β| = π/4

(ii) |α - β| = π/2

(iii) |α - β| = π/6

(iv) |α - β| = π/3

Solution:

Let the vertices of the triangle be A (a, b), B (a + k cos α, b + k sin α) and C (a + k cos β, b + k sin β).

Now, AB² = (a + k cos α - a)² + (b + k sin α - b)²

= k² cos² α + k² sin² α = k²;

Similarly, CA² = k² and

BC² = (a + k cos β - a - k cos α)² + (b + k sin β - b - k sin α)²

= k² (cos² β + cos² α - 2 cos α cos β + sin² β + sin² α - 2 sin α sin β)

= k² [cos² β + sin² β + cos² α + sin² α - 2(cos α cos β + sin α sin β)]

= k² [1 + 1 - 2 cos (α - β)]

= 2k² [1 - cos (α - β)]

Since ABC is an equilateral triangle, hence

AB² = BC²

or, k² = 2k² [1 - cos (α - β)]

or, 1/2 = 1 - cos(α - β) [since, k # 0]

or, cos (α - β) = 1/2 = cos π/3

Therefore, |α - β| = π/3 .

There for, condition (iv) is true.



3. Find the point on the y-axis which is equidistant from the points (2, 3)and(-1, 2).

Solution:

Let P(0, y) be the required point on the y-axis and the given points are A (2, 3) and B(- 1, 2). By question,

PA = PB = PA² = PB²

or, (2 - 0)² + (3 - y)² = (-1 - 0)² + (2 – y)²

or, 4 + 9 + y² - 6y = 1 + 4 + y² - 4y

or, - 6y + 4y = 1 - 9 or, - 2y = -8

or, y = 4.

Therefore, the required point on the y-axis is (0, 4).

4. Find the circum-centre and circum-radius of the triangle whose vertices are (3, 4), (3, - 6) and (- 1, 2). 


Solution:
 

Let A(3, 4), B (3, - 6), C (- 1, 2) be the vertices of the triangle and P(x, y ) the required circum-centre and r the circum-radius. Then, we must have, 

r² = PA² = (x - 3)² + (y - 4)² ……………………..(1) 

r² = PB² = (x - 3)² + (y + 6)² ……………………….(2) 

and r² = PC² = (x + 1)² + (y - 2)² ……………………….(3) 

From (1) and (2) we get, 

(x - 3)² + (y - 4)² = (x - 3)² + (y + 6)² 

Or, y² - 8y + 16 = y² + 12y + 36 

or, - 20y = 20 or, y = - 1 

Again, from (2) and (3) we get, 

(x - 3)² + (y + 6)² = (x + 1 )² + (y - 2)²

or, x² - 6x + 9 + 25 = x² + 2x + 1 + 9 [putting y = - 1] 

or, - 8x = - 24 

or, x = 3 

Finally, putting x = 3 and y = - 1 in (1) we get, 

r² = 0² + (-1 - 4)² = 25 

Therefore, r = 5 

Therefore, the co-ordinates of circum-centre are (3, - 1) and circum-radius = 5 units. 



5. Show that the four points (2, 5), (5, 9), (9, 12) and (6, 8) when joined in order, form a rhombus. 

Solution:
 

Let the given points be A(2, 5), B (5, 9), C (9, 12) and D(6, 8). Now, AB² = (5 - 2)² + (9 - 5)² = 9 + 16 = 25

BC² = (9 - 5)² + (12 - 9)² = 16 + 9 = 25

CD² = (6 - 9)² (8 - 12)² = 9 + 16 = 25

DA² = (2 - 6)² + (5 - 8)² = 16 + 9 = 25

AC² = ( 9 - 2)² + (12 - 5)² = 49 + 49 = 98

and BD² = (6 - 5)² + (8 - 9)² = 1 + 1 = 2

From the above result we see that

AB = BC = CD = DA and AC ≠ BD

That is the four sides of the quadrilateral ABCD are equal but diagonals AC and BD are not equal. Therefore, the quadrilateral ABCD is a rhombus. Proved.

The above worked-out problems on distance between two points are explained step-by-step with the help of the formula.

 Co-ordinate Geometry 




11 and 12 Grade Math 

From Problems on Distance Between Two Points to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Circle Worksheet | Free Worksheet with Answer |Practice Math

    Jul 10, 25 11:41 AM

    Radii of the circRadii, Chords, Diameters, Semi-circles
    In 5th Grade Circle Worksheet you will get different types of questions on parts of a circle, relation between radius and diameter, interior of a circle, exterior of a circle and construction of circl…

    Read More

  2. Construction of a Circle | Working Rules | Step-by-step Explanation |

    Jul 09, 25 01:29 AM

    Parts of a Circle
    Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jul 08, 25 02:32 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Addition & Subtraction Together |Combination of addition & subtraction

    Jul 08, 25 02:23 PM

    Addition and Subtraction Together Problem
    We will solve the different types of problems involving addition and subtraction together. To show the problem involving both addition and subtraction, we first group all the numbers with ‘+’ and…

    Read More

  5. 5th Grade Circle | Radius, Interior and Exterior of a Circle|Worksheet

    Jul 08, 25 09:55 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More