Relation between Cartesian and Polar Co-Ordinates

Here we will learn to find the relation between Cartesian and Polar Co-Ordinates.

Let XOX’ and YOY’ be a set of rectangular Cartesian axes of polar Co-ordinates through the origin O. now, consider a polar Co-ordinates system whose pole and initial line coincide respectively with the origin O and the positive x-axis of the Cartesian system. Let P be any point on the plane whose Cartesian and polar Co-ordinates are (x, y) and (r, θ) respectively. Draw PM perpendicular to OX. Then we have,

polar co-ordinates



OM = x, PM = y, OP = r and < MOP = θ

Now, from the right-angled triangle MOP we get,

x/r = cos θ     or, x = r cos θ     …… (1)

                and

y/r = sin θ     or, y = r sin     …… (2)

Using (1) and (2) we can find Cartesian Co-ordinates (x, y) of the point whose polar Co-ordinates (r, θ) are given.

Again, from the right angled triangle OPM we get,

r² = x² + y²

or, r = √(x² + y²) …… (3)

and tan θ = y/x or, θ = tan\(^{-1}\) y/x ……… (4) 


Using (3) and (4) we can find the polar Co-ordinates (r, θ) of the points whose Cartesian Co-ordinates (x, y) are given.


Note:

If the Cartesian Co-ordinates (x, y) of a point are given then to find the value of the vectorial angle θ by the transformation equation θ = tan\(^{-1}\) y/x we should note the quadrant in which the point (x, y) lies.


Examples on the relation between Cartesian and Polar Co-Ordinates.

1. The cartesian co-ordinates of a point are (- 1, -√3); find its polar co-ordinates. 

Solution: 

If the pole and initial line of the polar system coincide with the origin and positive x-axis respectively of the cartesian system and the cartesian and polar co-ordinates of a point are ( x, y ) and ( r, θ ) respectively, then 

    x = r cos θ and y= r sin θ. 

In the given problem, x = -1 and y = -√3

Therefore, r cos θ = -1 and r sin θ = -√3 

Therefore, r² Cos² θ + r² sin² = (- 1)² + (-√3)²

And tan θ = (r sin θ)/(r cos θ) = (-√3)/(-1) = √3 = tan π/3

Or, tan θ =tan(π+ π/3) [Since, the point (- 1, - √3) lise in the third quadrant] 

Or, tan θ = tan 4π/3 

Therefore, θ = 4π/3 

Therefore, the polar co-ordinates of the point (- 1, - √3) are (2, 4π/3). 

2. Find the cartesian co-ordinates of the point whose polar co-ordinates are (3, - π/3). 


Solution:

Let (x, y) be the cartesian co-ordinates of the point whose polar co-ordinates are (3, - π/3). Then,

x= r cos θ = 3 cos (- π/3) = 3 cos π/3 = 3 ∙ 1/2 = 3/2

and y = r sin θ = 3 sin (- π/3) = 3 sin π/3 = -(3√3)/2.

Therefore, the required cartesian co-ordinates of the point (3, -π/3) are (3/2, -(3√3)/2)



3. Transfer, the cartesian form of equation of the curve x² - y² = 2ax to its polar form. 


Solution:

Let OX and OY be the rectangular cartesian axes and the pole and the initial line of the polar system coincide with O and OX respectively. If (x, y) be the cartesian co-ordinates of the point whose polar co-ordinates are (r, θ), then we have,

x = r cos θ and y = r sin θ.

Now, x² - y² = 2ax

or, r² cos² θ - r² sin² θ = 2a.r cos θ

or, r² (cos² θ - sin² θ) = 2ar cos θ

or, r cos 2 θ = 2a cos θ (Since, r ≠0)

which is the required polar form of the given cartesian equation.



4. Transform the polar form of equation \(r^{\frac{1}{2}}\) = \(a^{\frac{1}{2}}\)

 cos θ/2 to its cartesian form. 


Solution:

Let OX and OY be the rectangular cartesian axes and the pole and the initial line of the polar system coincide with O and OX respectively. If (x, y) be the cartesian co-ordinates of the point whose polar co-ordinates are (r, θ), then we have,

x = r cos θ and y = r sin θ.

Clearly, x² + y²

= r² cos² θ + r² sin² θ

= r²

Now, \(r^{\frac{1}{2}}\) = \(a^{\frac{1}{2}}\) cos θ/2

or, r = a cos² θ/2 (squaring both sides)

or, 2r = a ∙ 2 cos² θ/2

or, 2r = = a(1 + cosθ); [Since, cos² θ/2 = 1 + cosθ]

or, 2r² = a(r + r cosθ) [multiplying by r (since, r ≠0)]

or, 2(x² + y ²) = ar + ax [r² = x² + y² and r cos θ = x]

or, 2x² + 2y² - ax = ar

or, (2x² + 2y² - ax)² = a²r² [Squaring both sides]

or, (2x² + 2y² - ax)² = a² (x² + y²),

which is the required cartesian form of the given polar form of equation.


 Co-ordinate Geometry 




11 and 12 Grade Math 

From Relation between Cartesian and Polar Co-Ordinates to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Fundamental Geometrical Concepts | Point | Line | Properties of Lines

    Apr 18, 24 02:58 AM

    Point P
    The fundamental geometrical concepts depend on three basic concepts — point, line and plane. The terms cannot be precisely defined. However, the meanings of these terms are explained through examples.

    Read More

  2. What is a Polygon? | Simple Closed Curve | Triangle | Quadrilateral

    Apr 18, 24 02:15 AM

    What is a polygon? A simple closed curve made of three or more line-segments is called a polygon. A polygon has at least three line-segments.

    Read More

  3. Simple Closed Curves | Types of Closed Curves | Collection of Curves

    Apr 18, 24 01:36 AM

    Closed Curves Examples
    In simple closed curves the shapes are closed by line-segments or by a curved line. Triangle, quadrilateral, circle, etc., are examples of closed curves.

    Read More

  4. Tangrams Math | Traditional Chinese Geometrical Puzzle | Triangles

    Apr 18, 24 12:31 AM

    Tangrams
    Tangram is a traditional Chinese geometrical puzzle with 7 pieces (1 parallelogram, 1 square and 5 triangles) that can be arranged to match any particular design. In the given figure, it consists of o…

    Read More

  5. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Apr 17, 24 01:32 PM

    Duration of Time
    We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton every evening. Yesterday, their game started at 5 : 15 p.m.

    Read More