Loading [MathJax]/jax/output/HTML-CSS/jax.js

Subscribe to our YouTube channel for the latest videos, updates, and tips.


Relation between Cartesian and Polar Co-Ordinates

Here we will learn to find the relation between Cartesian and Polar Co-Ordinates.

Let XOX’ and YOY’ be a set of rectangular Cartesian axes of polar Co-ordinates through the origin O. now, consider a polar Co-ordinates system whose pole and initial line coincide respectively with the origin O and the positive x-axis of the Cartesian system. Let P be any point on the plane whose Cartesian and polar Co-ordinates are (x, y) and (r, θ) respectively. Draw PM perpendicular to OX. Then we have,

polar co-ordinates



OM = x, PM = y, OP = r and < MOP = θ

Now, from the right-angled triangle MOP we get,

x/r = cos θ     or, x = r cos θ     …… (1)

                and

y/r = sin θ     or, y = r sin     …… (2)

Using (1) and (2) we can find Cartesian Co-ordinates (x, y) of the point whose polar Co-ordinates (r, θ) are given.

Again, from the right angled triangle OPM we get,

r² = x² + y²

or, r = √(x² + y²) …… (3)

and tan θ = y/x or, θ = tan1 y/x ……… (4) 


Using (3) and (4) we can find the polar Co-ordinates (r, θ) of the points whose Cartesian Co-ordinates (x, y) are given.


Note:

If the Cartesian Co-ordinates (x, y) of a point are given then to find the value of the vectorial angle θ by the transformation equation θ = tan1 y/x we should note the quadrant in which the point (x, y) lies.


Examples on the relation between Cartesian and Polar Co-Ordinates.

1. The cartesian co-ordinates of a point are (- 1, -√3); find its polar co-ordinates. 

Solution: 

If the pole and initial line of the polar system coincide with the origin and positive x-axis respectively of the cartesian system and the cartesian and polar co-ordinates of a point are ( x, y ) and ( r, θ ) respectively, then 

    x = r cos θ and y= r sin θ. 

In the given problem, x = -1 and y = -√3

Therefore, r cos θ = -1 and r sin θ = -√3 

Therefore, r² Cos² θ + r² sin² = (- 1)² + (-√3)²

And tan θ = (r sin θ)/(r cos θ) = (-√3)/(-1) = √3 = tan π/3

Or, tan θ =tan(π+ π/3) [Since, the point (- 1, - √3) lise in the third quadrant] 

Or, tan θ = tan 4π/3 

Therefore, θ = 4π/3 

Therefore, the polar co-ordinates of the point (- 1, - √3) are (2, 4π/3). 

2. Find the cartesian co-ordinates of the point whose polar co-ordinates are (3, - π/3). 


Solution:

Let (x, y) be the cartesian co-ordinates of the point whose polar co-ordinates are (3, - π/3). Then,

x= r cos θ = 3 cos (- π/3) = 3 cos π/3 = 3 ∙ 1/2 = 3/2

and y = r sin θ = 3 sin (- π/3) = 3 sin π/3 = -(3√3)/2.

Therefore, the required cartesian co-ordinates of the point (3, -π/3) are (3/2, -(3√3)/2)



3. Transfer, the cartesian form of equation of the curve x² - y² = 2ax to its polar form. 


Solution:

Let OX and OY be the rectangular cartesian axes and the pole and the initial line of the polar system coincide with O and OX respectively. If (x, y) be the cartesian co-ordinates of the point whose polar co-ordinates are (r, θ), then we have,

x = r cos θ and y = r sin θ.

Now, x² - y² = 2ax

or, r² cos² θ - r² sin² θ = 2a.r cos θ

or, r² (cos² θ - sin² θ) = 2ar cos θ

or, r cos 2 θ = 2a cos θ (Since, r ≠0)

which is the required polar form of the given cartesian equation.



4. Transform the polar form of equation r12 = a12

 cos θ/2 to its cartesian form. 


Solution:

Let OX and OY be the rectangular cartesian axes and the pole and the initial line of the polar system coincide with O and OX respectively. If (x, y) be the cartesian co-ordinates of the point whose polar co-ordinates are (r, θ), then we have,

x = r cos θ and y = r sin θ.

Clearly, x² + y²

= r² cos² θ + r² sin² θ

= r²

Now, r12 = a12 cos θ/2

or, r = a cos² θ/2 (squaring both sides)

or, 2r = a ∙ 2 cos² θ/2

or, 2r = = a(1 + cosθ); [Since, cos² θ/2 = 1 + cosθ]

or, 2r² = a(r + r cosθ) [multiplying by r (since, r ≠0)]

or, 2(x² + y ²) = ar + ax [r² = x² + y² and r cos θ = x]

or, 2x² + 2y² - ax = ar

or, (2x² + 2y² - ax)² = a²r² [Squaring both sides]

or, (2x² + 2y² - ax)² = a² (x² + y²),

which is the required cartesian form of the given polar form of equation.


 Co-ordinate Geometry 




11 and 12 Grade Math 

From Relation between Cartesian and Polar Co-Ordinates to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 8 Times Table | Multiplication Table of 8 | Read Eight Times Table

    May 18, 25 04:33 PM

    Printable eight times table
    In 8 times table we will memorize the multiplication table. Printable multiplication table is also available for the homeschoolers. 8 × 0 = 0 8 × 1 = 8 8 × 2 = 16 8 × 3 = 24 8 × 4 = 32 8 × 5 = 40

    Read More

  2. Worksheet on Average | Word Problem on Average | Questions on Average

    May 17, 25 05:37 PM

    In worksheet on average interest we will solve 10 different types of question. Find the average of first 10 prime numbers. The average height of a family of five is 150 cm. If the heights of 4 family

    Read More

  3. How to Find the Average in Math? | What Does Average Mean? |Definition

    May 17, 25 04:04 PM

    Average 2
    Average means a number which is between the largest and the smallest number. Average can be calculated only for similar quantities and not for dissimilar quantities.

    Read More

  4. Problems Based on Average | Word Problems |Calculating Arithmetic Mean

    May 17, 25 03:47 PM

    Here we will learn to solve the three important types of word problems based on average. The questions are mainly based on average or mean, weighted average and average speed.

    Read More

  5. Rounding Decimals | How to Round a Decimal? | Rounding off Decimal

    May 16, 25 11:13 AM

    Round off to Nearest One
    Rounding decimals are frequently used in our daily life mainly for calculating the cost of the items. In mathematics rounding off decimal is a technique used to estimate or to find the approximate

    Read More