Relation between Cartesian and Polar Co-Ordinates

Here we will learn to find the relation between Cartesian and Polar Co-Ordinates.

Let XOX’ and YOY’ be a set of rectangular Cartesian axes of polar Co-ordinates through the origin O. now, consider a polar Co-ordinates system whose pole and initial line coincide respectively with the origin O and the positive x-axis of the Cartesian system. Let P be any point on the plane whose Cartesian and polar Co-ordinates are (x, y) and (r, θ) respectively. Draw PM perpendicular to OX. Then we have,

polar co-ordinates



OM = x, PM = y, OP = r and < MOP = θ

Now, from the right-angled triangle MOP we get,

x/r = cos θ     or, x = r cos θ     …… (1)

                and

y/r = sin θ     or, y = r sin     …… (2)

Using (1) and (2) we can find Cartesian Co-ordinates (x, y) of the point whose polar Co-ordinates (r, θ) are given.

Again, from the right angled triangle OPM we get,

r² = x² + y²

or, r = √(x² + y²) …… (3)

and tan θ = y/x or, θ = tan\(^{-1}\) y/x ……… (4) 


Using (3) and (4) we can find the polar Co-ordinates (r, θ) of the points whose Cartesian Co-ordinates (x, y) are given.


Note:

If the Cartesian Co-ordinates (x, y) of a point are given then to find the value of the vectorial angle θ by the transformation equation θ = tan\(^{-1}\) y/x we should note the quadrant in which the point (x, y) lies.


Examples on the relation between Cartesian and Polar Co-Ordinates.

1. The cartesian co-ordinates of a point are (- 1, -√3); find its polar co-ordinates. 

Solution: 

If the pole and initial line of the polar system coincide with the origin and positive x-axis respectively of the cartesian system and the cartesian and polar co-ordinates of a point are ( x, y ) and ( r, θ ) respectively, then 

    x = r cos θ and y= r sin θ. 

In the given problem, x = -1 and y = -√3

Therefore, r cos θ = -1 and r sin θ = -√3 

Therefore, r² Cos² θ + r² sin² = (- 1)² + (-√3)²

And tan θ = (r sin θ)/(r cos θ) = (-√3)/(-1) = √3 = tan π/3

Or, tan θ =tan(π+ π/3) [Since, the point (- 1, - √3) lise in the third quadrant] 

Or, tan θ = tan 4π/3 

Therefore, θ = 4π/3 

Therefore, the polar co-ordinates of the point (- 1, - √3) are (2, 4π/3). 

2. Find the cartesian co-ordinates of the point whose polar co-ordinates are (3, - π/3). 


Solution:

Let (x, y) be the cartesian co-ordinates of the point whose polar co-ordinates are (3, - π/3). Then,

x= r cos θ = 3 cos (- π/3) = 3 cos π/3 = 3 ∙ 1/2 = 3/2

and y = r sin θ = 3 sin (- π/3) = 3 sin π/3 = -(3√3)/2.

Therefore, the required cartesian co-ordinates of the point (3, -π/3) are (3/2, -(3√3)/2)



3. Transfer, the cartesian form of equation of the curve x² - y² = 2ax to its polar form. 


Solution:

Let OX and OY be the rectangular cartesian axes and the pole and the initial line of the polar system coincide with O and OX respectively. If (x, y) be the cartesian co-ordinates of the point whose polar co-ordinates are (r, θ), then we have,

x = r cos θ and y = r sin θ.

Now, x² - y² = 2ax

or, r² cos² θ - r² sin² θ = 2a.r cos θ

or, r² (cos² θ - sin² θ) = 2ar cos θ

or, r cos 2 θ = 2a cos θ (Since, r ≠0)

which is the required polar form of the given cartesian equation.



4. Transform the polar form of equation \(r^{\frac{1}{2}}\) = \(a^{\frac{1}{2}}\)

 cos θ/2 to its cartesian form. 


Solution:

Let OX and OY be the rectangular cartesian axes and the pole and the initial line of the polar system coincide with O and OX respectively. If (x, y) be the cartesian co-ordinates of the point whose polar co-ordinates are (r, θ), then we have,

x = r cos θ and y = r sin θ.

Clearly, x² + y²

= r² cos² θ + r² sin² θ

= r²

Now, \(r^{\frac{1}{2}}\) = \(a^{\frac{1}{2}}\) cos θ/2

or, r = a cos² θ/2 (squaring both sides)

or, 2r = a ∙ 2 cos² θ/2

or, 2r = = a(1 + cosθ); [Since, cos² θ/2 = 1 + cosθ]

or, 2r² = a(r + r cosθ) [multiplying by r (since, r ≠0)]

or, 2(x² + y ²) = ar + ax [r² = x² + y² and r cos θ = x]

or, 2x² + 2y² - ax = ar

or, (2x² + 2y² - ax)² = a²r² [Squaring both sides]

or, (2x² + 2y² - ax)² = a² (x² + y²),

which is the required cartesian form of the given polar form of equation.


 Co-ordinate Geometry 




11 and 12 Grade Math 

From Relation between Cartesian and Polar Co-Ordinates to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on 10 Times Table | Printable Multiplication Table | Video

    Mar 21, 25 03:46 PM

    worksheet on multiplication of 10 times table
    Worksheet on 10 times table can be printed out. Homeschoolers can also use these multiplication table sheets to practice at home.

    Read More

  2. 5th Grade Prime and Composite Numbers | Definitions | Examples | Math

    Mar 21, 25 12:18 AM

    5th grade prime and composite numbers

    Read More

  3. 14 Times Table | Read and Write Multiplication Table of 14| Video

    Mar 20, 25 04:03 PM

    14 Times Table
    In 14 times table we will learn how to read and write multiplication table of 14. We read fourteen times table as:One time fourteen is 14 Two times fourteen are 28 Three times fourteen are 42

    Read More

  4. 5th Grade Test of Divisibility Rules | Divisibility Rules From 2 to 12

    Mar 20, 25 04:00 PM

    In 5th grade test of divisibility rules we will learn about the exact divisibility of a number by the numbers from 2 to 12. The digit in the ones place should be 2, 4, 6, 8 or 0.

    Read More

  5. 5th Grade Even and Odd Numbers | Definitions | Examples

    Mar 20, 25 02:45 AM

    Numbers which are exactly divisible by 2 are even numbers. For example. 2,4,6,8,20,48,88, etc. are even numbers. They are multiples of 2. Numbers which are not exactly divisible by 2 are odd numbers…

    Read More