Processing math: 100%

Area of the Triangle Formed by Three co-ordinate Points

Here we will discuss about the area of the triangle formed by three co-ordinate points.

How to find the area of the triangle formed by joining the three given points?

(A) In Terms of Rectangular Cartesian Co-ordinates:

Let (x₁, y₁), (x₂, y₂) and (x₃, y₃) be the co-ordinates of the vertices A, B, C respectively of the triangle ABC. We are to find the area of the triangle ABC.

Area of the triangle formed by three co-ordinate points

Draw ALBM and CN perpendiculars from A, B and C respectively on the x-axis. 

Then, we have, OL = x₁, OM = x₂, ON = x₃ and AL = y₁, BM = y₂, CN = y₃.

Therefore, LM = OM - OL = x₂ - x₁;

NM = OM - ON = x₂ - x₃;

and LN = ON - OL = x₃ - x₁.


Since the area of a trapezium = 12 × the sum of the parallel sides × the perpendicular distance between them, 

Hence, the area of the triangle ABC = ∆ABC

= area of the trapezium ALNC + area of the trapezium CNMB - area of the trapezium ALMB 

= 12 ∙ (AL + NC) . LN + 12 ∙ (CN + BM) ∙ NM - 12 ∙ (AL + BM).LM

= 12 ∙ (y₁ + y₃) (x₃ - x₁) + 12 ∙ (y₃ + y₂) (x₂ - x₃) - 12 ∙ (y₁ + y₂) (x₂ - x₁)

= 12 ∙ [x₁ y₂ - y₁ x₂ + x₂ y₃ - y₂ x₃ + x₃ y₁ - y₃ x₁] 

= 12[x₁ (y₂ - y₃) + x₂ (y₃ - y₁) + x₃ (y₁ - y₂)] sq. units. 


Note:

(i) The area of the triangle ABC can also be expressed in the following form:

∆ ABC= 12[y₁ (x₂ - x₃) + y₂ (x₃ - x₁) + y₃ (x₁ - x₂)] sq. units. 


(ii)The above expression for the area of the triangle ABC will be positive if the vertices A, B, C are taken in the anti-clockwise direction as shown in the given figure;

Anti-clockwise direction


on the contrary, the expression for the area of the triangle will be negative if the vertices A, B and C are taken in the clockwise direction as show in the given figure.

Clockwise direction


However, in either case the numerical value of the expression would be the same.

Therefore, for any position of the vertices A, B and C we can write, 

∆ ABC = 12| x₁ (y₂ - y₃) + x₂ (y₃ - y₁) + x₃ (y₁ - y₂) | sq. units. 


short-cut method to find Area of the Triangle



(iii) The following short-cut method is often used to find the area of the triangle ABC:

Write in three rows the co-ordinates (x₁, y₁), (x₂, y₂) and (x₃, y₃) of the vertices A, B, C respectively and at the last row write again the co-ordinates (x₁, y₁), of the vertex A. Now, take the sum of the product of digits shown by (↘) and from this sum subtract the sum of the products of digits shown by (↗). The required area of the triangle ABC will be equal to half the difference obtained. Thus,

∆ ABC = 12| (x₁ y₂ + x₂ y₃ + x₃ y₁) - (x₂ y₁ + x₃ y₂ + x₁ y₃) | sq. units.



(B) In Terms of Polar Co-ordinates:

Let (r₁, θ₁), (r₂, θ₂) and (r₃, θ₃) be the polar co-ordinates of the vertices A, B, C respectively of the triangle ABC referred to the pole O and initial line OX.

Then, OA = r₁, OB = r₂, OC = r₃

and ∠XOA = θ₁, ∠XOB = θ₂, ∠ XOC = θ₃

Clearly, ∠AOB = θ₁ - θ₂; ∠BOC = θ₃ - θ₂ and ∠COA = θ₁ - θ₃

Polar Co-ordinates area


Now, ∆ ABC = ∆ BOC + ∆ COA - ∆ AOB

= 12  OB ∙ OC ∙ sin ∠BOC + 12 OC ∙ OA ∙ sin ∠COA - 12 OA ∙ OB ∙ sin ∠AOB

= 12 [r₂ r₃ sin (θ₃ – θ₂) + r₃ r₁ sin (θ₁ - θ₃) - r₁ r₂ sin (θ₁ - θ₂)] square units 

As before, for all positions of the vertices A, B, C we shall have,

∆ABC = 12| r₂ r₃ sin (θ₃ – θ₂) + r₂ r₃ sin (θ₁ - θ₃) - r₁ r₂ sin (θ₁ - θ₂) | square units. 


Examples on area of the triangle formed by three co-ordinate points:

Find the area of the triangle formed by joining the point (3, 4), (-4, 3) and (8, 6).

Solution:

We know that, ∆ ABC = 12| (x₁ y₂ + x₂ y₃ + x₃ y₁) - (x₂ y₁ + x₃ y₂ + ₁ y₃) | sq. units. 


The area of the triangle formed by joining the given point

= 12| [9 + (-24) + 32] - [-16 + 24 + 18] | sq. units

= 12| 17 - 26 | sq. units

= 12 | – 9 | sq. units 

= 92sq. units.

 Co-ordinate Geometry 





11 and 12 Grade Math 

Form Area of the Triangle Formed by Three co-ordinate Points to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. What is Area in Maths? | Units to find Area | Conversion Table of Area

    Jul 17, 25 01:06 AM

    Concept of Area
    The amount of surface that a plane figure covers is called its area. It’s unit is square centimeters or square meters etc. A rectangle, a square, a triangle and a circle are all examples of closed pla…

    Read More

  2. Worksheet on Perimeter | Perimeter of Squares and Rectangle | Answers

    Jul 17, 25 12:40 AM

    Most and Least Perimeter
    Practice the questions given in the worksheet on perimeter. The questions are based on finding the perimeter of the triangle, perimeter of the square, perimeter of rectangle and word problems. I. Find…

    Read More

  3. Formation of Square and Rectangle | Construction of Square & Rectangle

    Jul 16, 25 11:46 PM

    Construction of a Square
    In formation of square and rectangle we will learn how to construct square and rectangle. Construction of a Square: We follow the method given below. Step I: We draw a line segment AB of the required…

    Read More

  4. Perimeter of a Figure | Perimeter of a Simple Closed Figure | Examples

    Jul 16, 25 02:33 AM

    Perimeter of a Figure
    Perimeter of a figure is explained here. Perimeter is the total length of the boundary of a closed figure. The perimeter of a simple closed figure is the sum of the measures of line-segments which hav…

    Read More

  5. Formation of Numbers | Smallest and Greatest Number| Number Formation

    Jul 15, 25 11:46 AM

    In formation of numbers we will learn the numbers having different numbers of digits. We know that: (i) Greatest number of one digit = 9,

    Read More