Area of the Triangle Formed by Three co-ordinate Points

Here we will discuss about the area of the triangle formed by three co-ordinate points.

How to find the area of the triangle formed by joining the three given points?

(A) In Terms of Rectangular Cartesian Co-ordinates:

Let (x₁, y₁), (x₂, y₂) and (x₃, y₃) be the co-ordinates of the vertices A, B, C respectively of the triangle ABC. We are to find the area of the triangle ABC.

Area of the triangle formed by three co-ordinate points

Draw ALBM and CN perpendiculars from A, B and C respectively on the x-axis. 

Then, we have, OL = x₁, OM = x₂, ON = x₃ and AL = y₁, BM = y₂, CN = y₃.

Therefore, LM = OM - OL = x₂ - x₁;

NM = OM - ON = x₂ - x₃;

and LN = ON - OL = x₃ - x₁.


Since the area of a trapezium = \(\frac{1}{2}\) × the sum of the parallel sides × the perpendicular distance between them, 

Hence, the area of the triangle ABC = ∆ABC

= area of the trapezium ALNC + area of the trapezium CNMB - area of the trapezium ALMB 

= \(\frac{1}{2}\) ∙ (AL + NC) . LN + \(\frac{1}{2}\) ∙ (CN + BM) ∙ NM - \(\frac{1}{2}\) ∙ (AL + BM).LM

= \(\frac{1}{2}\) ∙ (y₁ + y₃) (x₃ - x₁) + \(\frac{1}{2}\) ∙ (y₃ + y₂) (x₂ - x₃) - \(\frac{1}{2}\) ∙ (y₁ + y₂) (x₂ - x₁)

= \(\frac{1}{2}\) ∙ [x₁ y₂ - y₁ x₂ + x₂ y₃ - y₂ x₃ + x₃ y₁ - y₃ x₁] 

= \(\frac{1}{2}\)[x₁ (y₂ - y₃) + x₂ (y₃ - y₁) + x₃ (y₁ - y₂)] sq. units. 


Note:

(i) The area of the triangle ABC can also be expressed in the following form:

∆ ABC= \(\frac{1}{2}\)[y₁ (x₂ - x₃) + y₂ (x₃ - x₁) + y₃ (x₁ - x₂)] sq. units. 


(ii)The above expression for the area of the triangle ABC will be positive if the vertices A, B, C are taken in the anti-clockwise direction as shown in the given figure;

Anti-clockwise direction


on the contrary, the expression for the area of the triangle will be negative if the vertices A, B and C are taken in the clockwise direction as show in the given figure.

Clockwise direction


However, in either case the numerical value of the expression would be the same.

Therefore, for any position of the vertices A, B and C we can write, 

∆ ABC = \(\frac{1}{2}\)| x₁ (y₂ - y₃) + x₂ (y₃ - y₁) + x₃ (y₁ - y₂) | sq. units. 


short-cut method to find Area of the Triangle



(iii) The following short-cut method is often used to find the area of the triangle ABC:

Write in three rows the co-ordinates (x₁, y₁), (x₂, y₂) and (x₃, y₃) of the vertices A, B, C respectively and at the last row write again the co-ordinates (x₁, y₁), of the vertex A. Now, take the sum of the product of digits shown by (↘) and from this sum subtract the sum of the products of digits shown by (↗). The required area of the triangle ABC will be equal to half the difference obtained. Thus,

∆ ABC = \(\frac{1}{2}\)| (x₁ y₂ + x₂ y₃ + x₃ y₁) - (x₂ y₁ + x₃ y₂ + x₁ y₃) | sq. units.



(B) In Terms of Polar Co-ordinates:

Let (r₁, θ₁), (r₂, θ₂) and (r₃, θ₃) be the polar co-ordinates of the vertices A, B, C respectively of the triangle ABC referred to the pole O and initial line OX.

Then, OA = r₁, OB = r₂, OC = r₃

and ∠XOA = θ₁, ∠XOB = θ₂, ∠ XOC = θ₃

Clearly, ∠AOB = θ₁ - θ₂; ∠BOC = θ₃ - θ₂ and ∠COA = θ₁ - θ₃

Polar Co-ordinates area


Now, ∆ ABC = ∆ BOC + ∆ COA - ∆ AOB

= \(\frac{1}{2}\)  OB ∙ OC ∙ sin ∠BOC + \(\frac{1}{2}\) OC ∙ OA ∙ sin ∠COA - \(\frac{1}{2}\) OA ∙ OB ∙ sin ∠AOB

= \(\frac{1}{2}\) [r₂ r₃ sin (θ₃ – θ₂) + r₃ r₁ sin (θ₁ - θ₃) - r₁ r₂ sin (θ₁ - θ₂)] square units 

As before, for all positions of the vertices A, B, C we shall have,

∆ABC = \(\frac{1}{2}\)| r₂ r₃ sin (θ₃ – θ₂) + r₂ r₃ sin (θ₁ - θ₃) - r₁ r₂ sin (θ₁ - θ₂) | square units. 


Examples on area of the triangle formed by three co-ordinate points:

Find the area of the triangle formed by joining the point (3, 4), (-4, 3) and (8, 6).

Solution:

We know that, ∆ ABC = \(\frac{1}{2}\)| (x₁ y₂ + x₂ y₃ + x₃ y₁) - (x₂ y₁ + x₃ y₂ + ₁ y₃) | sq. units. 


The area of the triangle formed by joining the given point

= \(\frac{1}{2}\)| [9 + (-24) + 32] - [-16 + 24 + 18] | sq. units

= \(\frac{1}{2}\)| 17 - 26 | sq. units

= \(\frac{1}{2}\) | – 9 | sq. units 

= \(\frac{9}{2}\)sq. units.

 Co-ordinate Geometry 





11 and 12 Grade Math 

Form Area of the Triangle Formed by Three co-ordinate Points to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 11, 24 09:08 AM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  2. Types of Lines |Straight Lines|Curved Lines|Horizontal Lines| Vertical

    Dec 09, 24 10:39 PM

    Types of Lines
    What are the different types of lines? There are two different kinds of lines. (i) Straight line and (ii) Curved line. There are three different types of straight lines. (i) Horizontal lines, (ii) Ver…

    Read More

  3. Points and Line Segment | Two Points in a Curved Surface | Curve Line

    Dec 09, 24 01:08 AM

    Curved Lines and Straight Line
    We will discuss here about points and line segment. We know when two lines meet we get a point. When two points on a plane surface are joined, a straight line segment is obtained.

    Read More

  4. Solid Shapes | Basic Geometric Shapes | Common Solid Figures | Plane

    Dec 08, 24 11:19 PM

    Solid Shapes
    We will discuss about basic solid shapes. We see a variety of solid objects in our surroundings. Solid objects have one or more shapes like the following. Match the objects with similar shape.

    Read More

  5. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 07, 24 03:38 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More