Processing math: 100%

Area of the Triangle Formed by Three co-ordinate Points

Here we will discuss about the area of the triangle formed by three co-ordinate points.

How to find the area of the triangle formed by joining the three given points?

(A) In Terms of Rectangular Cartesian Co-ordinates:

Let (x₁, y₁), (x₂, y₂) and (x₃, y₃) be the co-ordinates of the vertices A, B, C respectively of the triangle ABC. We are to find the area of the triangle ABC.

Area of the triangle formed by three co-ordinate points

Draw ALBM and CN perpendiculars from A, B and C respectively on the x-axis. 

Then, we have, OL = x₁, OM = x₂, ON = x₃ and AL = y₁, BM = y₂, CN = y₃.

Therefore, LM = OM - OL = x₂ - x₁;

NM = OM - ON = x₂ - x₃;

and LN = ON - OL = x₃ - x₁.


Since the area of a trapezium = 12 × the sum of the parallel sides × the perpendicular distance between them, 

Hence, the area of the triangle ABC = ∆ABC

= area of the trapezium ALNC + area of the trapezium CNMB - area of the trapezium ALMB 

= 12 ∙ (AL + NC) . LN + 12 ∙ (CN + BM) ∙ NM - 12 ∙ (AL + BM).LM

= 12 ∙ (y₁ + y₃) (x₃ - x₁) + 12 ∙ (y₃ + y₂) (x₂ - x₃) - 12 ∙ (y₁ + y₂) (x₂ - x₁)

= 12 ∙ [x₁ y₂ - y₁ x₂ + x₂ y₃ - y₂ x₃ + x₃ y₁ - y₃ x₁] 

= 12[x₁ (y₂ - y₃) + x₂ (y₃ - y₁) + x₃ (y₁ - y₂)] sq. units. 


Note:

(i) The area of the triangle ABC can also be expressed in the following form:

∆ ABC= 12[y₁ (x₂ - x₃) + y₂ (x₃ - x₁) + y₃ (x₁ - x₂)] sq. units. 


(ii)The above expression for the area of the triangle ABC will be positive if the vertices A, B, C are taken in the anti-clockwise direction as shown in the given figure;

Anti-clockwise direction


on the contrary, the expression for the area of the triangle will be negative if the vertices A, B and C are taken in the clockwise direction as show in the given figure.

Clockwise direction


However, in either case the numerical value of the expression would be the same.

Therefore, for any position of the vertices A, B and C we can write, 

∆ ABC = 12| x₁ (y₂ - y₃) + x₂ (y₃ - y₁) + x₃ (y₁ - y₂) | sq. units. 


short-cut method to find Area of the Triangle



(iii) The following short-cut method is often used to find the area of the triangle ABC:

Write in three rows the co-ordinates (x₁, y₁), (x₂, y₂) and (x₃, y₃) of the vertices A, B, C respectively and at the last row write again the co-ordinates (x₁, y₁), of the vertex A. Now, take the sum of the product of digits shown by (↘) and from this sum subtract the sum of the products of digits shown by (↗). The required area of the triangle ABC will be equal to half the difference obtained. Thus,

∆ ABC = 12| (x₁ y₂ + x₂ y₃ + x₃ y₁) - (x₂ y₁ + x₃ y₂ + x₁ y₃) | sq. units.



(B) In Terms of Polar Co-ordinates:

Let (r₁, θ₁), (r₂, θ₂) and (r₃, θ₃) be the polar co-ordinates of the vertices A, B, C respectively of the triangle ABC referred to the pole O and initial line OX.

Then, OA = r₁, OB = r₂, OC = r₃

and ∠XOA = θ₁, ∠XOB = θ₂, ∠ XOC = θ₃

Clearly, ∠AOB = θ₁ - θ₂; ∠BOC = θ₃ - θ₂ and ∠COA = θ₁ - θ₃

Polar Co-ordinates area


Now, ∆ ABC = ∆ BOC + ∆ COA - ∆ AOB

= 12  OB ∙ OC ∙ sin ∠BOC + 12 OC ∙ OA ∙ sin ∠COA - 12 OA ∙ OB ∙ sin ∠AOB

= 12 [r₂ r₃ sin (θ₃ – θ₂) + r₃ r₁ sin (θ₁ - θ₃) - r₁ r₂ sin (θ₁ - θ₂)] square units 

As before, for all positions of the vertices A, B, C we shall have,

∆ABC = 12| r₂ r₃ sin (θ₃ – θ₂) + r₂ r₃ sin (θ₁ - θ₃) - r₁ r₂ sin (θ₁ - θ₂) | square units. 


Examples on area of the triangle formed by three co-ordinate points:

Find the area of the triangle formed by joining the point (3, 4), (-4, 3) and (8, 6).

Solution:

We know that, ∆ ABC = 12| (x₁ y₂ + x₂ y₃ + x₃ y₁) - (x₂ y₁ + x₃ y₂ + ₁ y₃) | sq. units. 


The area of the triangle formed by joining the given point

= 12| [9 + (-24) + 32] - [-16 + 24 + 18] | sq. units

= 12| 17 - 26 | sq. units

= 12 | – 9 | sq. units 

= 92sq. units.

 Co-ordinate Geometry 





11 and 12 Grade Math 

Form Area of the Triangle Formed by Three co-ordinate Points to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Addition of 3-Digit Numbers with Regrouping | Step-by-Step Method

    Apr 07, 25 02:53 AM

    Addition of 3-Digit Numbers with Regrouping
    We will learn addition of 3-digit numbers with regrouping. Do you know the addition of 3-digit number? Yes I know how to add the numbers. Now, let us learn to add the 3-digit numbers with regrouping.

    Read More

  2. Worksheet on Fractions | Questions on Fractions | Representation | Ans

    Apr 07, 25 02:37 AM

    Worksheet on Fractions
    In worksheet on fractions, all grade students can practice the questions on fractions on a whole number and also on representation of a fraction. This exercise sheet on fractions can be practiced

    Read More

  3. Counting Numbers from 1 to 50 | Match the Number | Missing Numbers

    Apr 04, 25 03:46 PM

    Math Coloring Pages on Counting Number Oredr
    In counting numbers from 1 to 50, recognize the numbers, count and then join the numbers in the correct number order. Here we mainly need eye-hand coordination to draw the picture and maintain the num

    Read More

  4. Counting Eleven to Twenty with Numbers and Words |Numbers from 11 - 20

    Apr 04, 25 03:21 PM

    Counting eleven to twenty with numbers and words are explained below. One ten and one more is eleven. Eleven comes after ten. One ten and two more is twelve. Twelve comes after eleven.

    Read More

  5. 5th Grade BODMAS Rule Worksheet | PEMDAS | Order of operations|Answers

    Apr 03, 25 03:11 PM

    5th Grade BODMAS Rule Worksheet
    In 5th Grade BODMAS Rule Worksheet you will get different types of problems on mathematical expressions involving different operations, mathematical expression with 'brackets' and 'of' and simplifying…

    Read More