Area of the Triangle Formed by Three co-ordinate Points

Here we will discuss about the area of the triangle formed by three co-ordinate points.

How to find the area of the triangle formed by joining the three given points?

(A) In Terms of Rectangular Cartesian Co-ordinates:

Let (x₁, y₁), (x₂, y₂) and (x₃, y₃) be the co-ordinates of the vertices A, B, C respectively of the triangle ABC. We are to find the area of the triangle ABC.

Area of the triangle formed by three co-ordinate points

Draw ALBM and CN perpendiculars from A, B and C respectively on the x-axis. 

Then, we have, OL = x₁, OM = x₂, ON = x₃ and AL = y₁, BM = y₂, CN = y₃.

Therefore, LM = OM - OL = x₂ - x₁;

NM = OM - ON = x₂ - x₃;

and LN = ON - OL = x₃ - x₁.


Since the area of a trapezium = \(\frac{1}{2}\) × the sum of the parallel sides × the perpendicular distance between them, 

Hence, the area of the triangle ABC = ∆ABC

= area of the trapezium ALNC + area of the trapezium CNMB - area of the trapezium ALMB 

= \(\frac{1}{2}\) ∙ (AL + NC) . LN + \(\frac{1}{2}\) ∙ (CN + BM) ∙ NM - \(\frac{1}{2}\) ∙ (AL + BM).LM

= \(\frac{1}{2}\) ∙ (y₁ + y₃) (x₃ - x₁) + \(\frac{1}{2}\) ∙ (y₃ + y₂) (x₂ - x₃) - \(\frac{1}{2}\) ∙ (y₁ + y₂) (x₂ - x₁)

= \(\frac{1}{2}\) ∙ [x₁ y₂ - y₁ x₂ + x₂ y₃ - y₂ x₃ + x₃ y₁ - y₃ x₁] 

= \(\frac{1}{2}\)[x₁ (y₂ - y₃) + x₂ (y₃ - y₁) + x₃ (y₁ - y₂)] sq. units. 


Note:

(i) The area of the triangle ABC can also be expressed in the following form:

∆ ABC= \(\frac{1}{2}\)[y₁ (x₂ - x₃) + y₂ (x₃ - x₁) + y₃ (x₁ - x₂)] sq. units. 


(ii)The above expression for the area of the triangle ABC will be positive if the vertices A, B, C are taken in the anti-clockwise direction as shown in the given figure;

Anti-clockwise direction


on the contrary, the expression for the area of the triangle will be negative if the vertices A, B and C are taken in the clockwise direction as show in the given figure.

Clockwise direction


However, in either case the numerical value of the expression would be the same.

Therefore, for any position of the vertices A, B and C we can write, 

∆ ABC = \(\frac{1}{2}\)| x₁ (y₂ - y₃) + x₂ (y₃ - y₁) + x₃ (y₁ - y₂) | sq. units. 


short-cut method to find Area of the Triangle



(iii) The following short-cut method is often used to find the area of the triangle ABC:

Write in three rows the co-ordinates (x₁, y₁), (x₂, y₂) and (x₃, y₃) of the vertices A, B, C respectively and at the last row write again the co-ordinates (x₁, y₁), of the vertex A. Now, take the sum of the product of digits shown by (↘) and from this sum subtract the sum of the products of digits shown by (↗). The required area of the triangle ABC will be equal to half the difference obtained. Thus,

∆ ABC = \(\frac{1}{2}\)| (x₁ y₂ + x₂ y₃ + x₃ y₁) - (x₂ y₁ + x₃ y₂ + x₁ y₃) | sq. units.



(B) In Terms of Polar Co-ordinates:

Let (r₁, θ₁), (r₂, θ₂) and (r₃, θ₃) be the polar co-ordinates of the vertices A, B, C respectively of the triangle ABC referred to the pole O and initial line OX.

Then, OA = r₁, OB = r₂, OC = r₃

and ∠XOA = θ₁, ∠XOB = θ₂, ∠ XOC = θ₃

Clearly, ∠AOB = θ₁ - θ₂; ∠BOC = θ₃ - θ₂ and ∠COA = θ₁ - θ₃

Polar Co-ordinates area


Now, ∆ ABC = ∆ BOC + ∆ COA - ∆ AOB

= \(\frac{1}{2}\)  OB ∙ OC ∙ sin ∠BOC + \(\frac{1}{2}\) OC ∙ OA ∙ sin ∠COA - \(\frac{1}{2}\) OA ∙ OB ∙ sin ∠AOB

= \(\frac{1}{2}\) [r₂ r₃ sin (θ₃ – θ₂) + r₃ r₁ sin (θ₁ - θ₃) - r₁ r₂ sin (θ₁ - θ₂)] square units 

As before, for all positions of the vertices A, B, C we shall have,

∆ABC = \(\frac{1}{2}\)| r₂ r₃ sin (θ₃ – θ₂) + r₂ r₃ sin (θ₁ - θ₃) - r₁ r₂ sin (θ₁ - θ₂) | square units. 


Examples on area of the triangle formed by three co-ordinate points:

Find the area of the triangle formed by joining the point (3, 4), (-4, 3) and (8, 6).

Solution:

We know that, ∆ ABC = \(\frac{1}{2}\)| (x₁ y₂ + x₂ y₃ + x₃ y₁) - (x₂ y₁ + x₃ y₂ + ₁ y₃) | sq. units. 


The area of the triangle formed by joining the given point

= \(\frac{1}{2}\)| [9 + (-24) + 32] - [-16 + 24 + 18] | sq. units

= \(\frac{1}{2}\)| 17 - 26 | sq. units

= \(\frac{1}{2}\) | – 9 | sq. units 

= \(\frac{9}{2}\)sq. units.

 Co-ordinate Geometry 





11 and 12 Grade Math 

Form Area of the Triangle Formed by Three co-ordinate Points to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Word Problems on Dividing Money | Solving Money Division Word Problems

    Feb 13, 25 10:29 AM

    Word Problems on Dividing Money
    Read the questions given in the word problems on dividing money. We need to understand the statement and divide the amount of money as ordinary numbers with two digit numbers. 1. Ron buys 15 pens for…

    Read More

  2. Addition and Subtraction of Money | Examples | Worksheet With Answers

    Feb 13, 25 09:02 AM

    Add Money Method
    In Addition and Subtraction of Money we will learn how to add money and how to subtract money.

    Read More

  3. Worksheet on Division of Money | Word Problems on Division of Money

    Feb 13, 25 03:53 AM

    Division of Money Worksheet
    Practice the questions given in the worksheet on division of money. This sheet provides different types of questions on dividing the amount of money by a number; finding the quotient

    Read More

  4. Worksheet on Multiplication of Money | Word Problems | Answers

    Feb 13, 25 03:17 AM

    Worksheet on Multiplication of Money
    Practice the questions given in the worksheet on multiplication of money. This sheet provides different types of questions on multiplying the amount of money by a number; arrange in columns the amount…

    Read More

  5. Division of Money | Worked-out Examples | Divide the Amounts of Money

    Feb 13, 25 12:16 AM

    Divide Money
    In division of money we will learn how to divide the amounts of money by a number. We carryout division with money the same way as in decimal numbers. We put decimal point in the quotient after two pl…

    Read More