Division of Line Segment

Here we will discuss about internal and external division of line segment.

To find the co-ordinates of the point dividing the line segment joining two given points in a given ratio:

(i) Internal Division of line segment:

Let (x₁, y₁) and (x₂, y₂) be the cartesian co-ordinates of the points P and Q respectively referred to rectangular co-ordinate axes OX and OY and the point R divides the line-segment PQ internally in a given ratio m : n (say), i.e., PR : RQ = m : n. We are to find the co-ordinates of R.

Internal Division of line segment

Let, (x, y) be the required co-ordinate of R . From P, Q and R, draw PLQM and RN perpendiculars on OX. Again, draw PT parallel to OX to cut RN at S and QM at T.

Then, 

PS = LN = ON - OL = x – x₁;

PT = LM = OMOL = x₂ - x₁;

RS = RNSN = RNPL = y - y₁;

and QT = QMTM = QMPL = y₂ – y₁

Again, PR/RQ = m/n

or, RQ/PR = n/m

or, RQ/PR + 1 = n/m + 1

or, (RQ + PR/PR) = (m + n)/m

o, PQ/PR = (m + n)/m

Now, by construction, the triangles PRS and PQT are similar; hence,

PS/PT = RS/QT = PR/PQ

Taking, PS/PT = PR/PQ we get,

(x - x₁)/(x₂ - x₁) = m/(m + n)

or, x (m + n) – x₁ (m + n) = mx₂ – mx₁

or, x ( m + n) = mx₂ - mx₁ + m x₁ + nx₁ = mx₂ + nx₁

Therefore, x = (mx2 + nx1)/(m + n)

Again, taking RS/QT = PR/PQ we get,

(y - y₁)/(y₂ - y₁) = m/(m + n)

or, ( m + n) y - ( m + n) y₁ = my₂ – my₁

or, ( m+ n)y = my₂ – my₁ + my₁ + ny₁ = my₂ + ny₁

Therefore, y = (my₂ + ny₁)/(m + n)

Therefore, the required co-ordinates of the point R are

((mx₂ + nx₁)/(m + n), (my₂ + ny₁)/(m + n))


(ii) External Division of line segment:

Let (x₁, y₁) and (x₂, y₂) be the cartesian co-ordinates of the points P and Q respectively referred to rectangular co-ordinate axes OX and OY and the point R divides the line-segment PQ externally in a given ratio m : n (say) i.e., PR : RQ = m : n. We are to find the co-ordinates of R.

External Division of line segment


Let, (x, y) be the required co-ordinates of R. Draw PL, QM and RN perpendiculars on OX. Again, draw PT parallel to OX to cut RN at S and QM and RN at S and T respectively, Then,

PS = LM = OM - OL = x₂ – x₁;

PT = LN = ONOL = x – x₁;

QT = QMSM = QMPL = y₂ – y₁

and RT = RNTN = RNPL = y — y₁

Again, PR/RQ = m/n

or, QR/PR = n/m

or, 1 - QR/PR = 1 - n/m

or, PR - RQ/PR = (m - n)/m

or, PQ/PR = (m - n)/m

Now, by construction, the triangles PQS and PRT are similar; hence,

PS/PT = QS/RT = PQ/PR

Taking, PS/PT = PQ/PR we get,

(x₂ - x₁)/(x - x₁) = (m - n)/m

or, (m – n)x - x₁(m – n) = m (x₂ - x₁)

or, (m - n)x = mx₂ – mx₁ + mx₁ - nx₁ = mx₂ - nx₁.

Therefore, x = (mx₂ - nx₁)/(m - n)

Again, taking QS/RT = PQ/PR we get,

(y₂ - y₁)/(y - y₁) = (m - n)/m

or, (m – n)y - (m – n)y₁ = m(y₂ - y₁)

or, (m - n)y = my₂ – my₁ + my₁ - ny₁ = my₂ - ny₁

Therefore, x = (my₂ - ny₁)/(m - n)

Therefore, the co-ordinates of the point R are

((mx₂ - nx₁)/(m - n), (my₂ - ny₁)/(m - n))



Corollary: To find the co-ordinates of the middle point of a given line segment:

midpoint formula

Let (x₁, y₁) and (x₂, y₂) he the co-ordinates of the points P and Q respectively and R, the mid-point of the line segment PQ. To find the co-ordinates R. Clearly, the point R divides the line segment PQ internally in the ratio 1 : 1; hence, the co-ordinates of R are ((x₁ + x₂)/2, (y₁ + y₂)/2). [Putting m = n the co-ordinates or R of ((mx₂ + nx₁)/(m + n), (my₂ + ny₁)/(m + n))]. This formula is also known as midpoint formula. By using this formula we can easily find the midpoint between the two co-ordinates.


Example on Division of Line Segment:

1. A diameter of a circle has the extreme points (7, 9) and (-1, -3). What would be the co-ordinates of the centre?

Solution:

Clearly, the mid-point of the given diameter is the centre of the circle. Therefore, the required co-ordinates of the centre of the circle = the co-ordinates of the mid-point of the line-segment joining the points (7, 9) and (- 1, - 3)

= ((7 - 1)/2, (9 - 3)/2) = (3, 3).



2. A point divides internally the line- segment joining the points (8, 9) and (-7, 4) in the ratio 2 : 3. Find the co-ordinates of the point.

Solution:

Let (x, y) be the co-ordinates of the point which divides internally the line-segment joining the given points. Then,

x = (2 ∙ (- 7) + 3 ∙ 8)/(2 + 3) = (-14 + 24)/5 = 10/5 = 2

And y = (2 ∙ 4 + 3 ∙ 9)/(2 + 3) = (8 + 27)/5 = 35/5 = 5

Therefore, the co-ordinates of the required point are (2, 7).

[Note: To get the co-ordinates of the point in question we have used formula, x = (mx₁ + n x₁)/(m + n) and y = my₂ + ny₁)/(m + n).

For the given problem, x₁ = 8, y₁ = 9, x₂ = -7, y₂ = 4, m = 2 and n = 3.]



3. A (4, 5) and B (7, - 1) are two given points and the point C divides the line-segment AB externally in the ratio 4 : 3. Find the co-ordinates of C.

Solution:

Let (x, y) be the required co-ordinates of C. Since C divides the line-segment AB externally in the ratio 4 : 3 hence,

x = (4 ∙ 7 - 3 ∙ 4)/(4 - 3) = (28 - 12)/1 = 16

And y = (4 ∙ (-1) - 3 ∙ 5)/(4 - 3) = (-4 - 15)/1 = -19

Therefore, the required co-ordinates of C are (16, - 19).

[Note: To get the co-ordinate of C we have used formula, 

x = (mx₁ + n x₁)/(m + n) and y = my₂ + ny₁)/(m + n).

In the given problem, x₁ = 4, y₁ = 5, x₂ = 7, y₂ = - 1, m = 4 and n = 3].


4. Find the ratio in which the line-segment joining the points (5, - 4) and (2, 3) is divided by the x-axis.

Solution:

Let the given points be A (5, - 4) and B (2, 3) and x-axis. intersects the line-segment ¯(AB )at P such that AP : PB = m : n. Then the co-ordinates of P are ((m ∙ 2 + n ∙ 5)/(m + n), (m ∙ 3 + n ∙ (-4))/(m + n)). Clearly, the point P lies on the x-axis ; hence, y co-ordinate of P must be zero.

Therefore, (m ∙ 3 + n ∙ (-4))/(m + n) = 0

or, 3m - 4n = 0

or, 3m = 4n

or, m/n = 4/3

Therefore, the x-axis divides the line-segment joining the given points internally in 4 : 3.


5. Find the ratio in which the point (- 11, 16) divides the '-line segment joining the points (- 1, 2) and (4, - 5).

Solution:

Let the given points be A (- 1, 2) and B (4, - 5) and the line-segment AB is divided in the ratio m : n at (- 11, 16). Then we must have,

-11 = (m ∙ 4 + n ∙ (-1))/(m + n)

or, -11m - 11n = 4m - n

or, -15m = 10n

or, m/n = 10/-15 = - 2/3

Therefore, the point (- 11, 16) divides the line-segment ¯BA externally in the ratio 3 : 2.

[Note: (i) A point divides a given line-segment internally or externally in a definite ratio according as the value of m:n is positive or negative.

(ii) See that we can obtain the same ratio m : n = - 2 : 3 using the condition 16 = (m ∙ (-5) +n ∙ 2)/(m + n)]

 Co-ordinate Geometry 





11 and 12 Grade Math 

From Division of Line Segment to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Worksheets on Comparison of Numbers | Find the Greatest Number

    Oct 10, 24 05:15 PM

    Comparison of Two Numbers
    In worksheets on comparison of numbers students can practice the questions for fourth grade to compare numbers. This worksheet contains questions on numbers like to find the greatest number, arranging…

    Read More

  2. Counting Before, After and Between Numbers up to 10 | Number Counting

    Oct 10, 24 10:06 AM

    Before After Between
    Counting before, after and between numbers up to 10 improves the child’s counting skills.

    Read More

  3. Expanded Form of a Number | Writing Numbers in Expanded Form | Values

    Oct 10, 24 03:19 AM

    Expanded Form of a Number
    We know that the number written as sum of the place-values of its digits is called the expanded form of a number. In expanded form of a number, the number is shown according to the place values of its…

    Read More

  4. Place Value | Place, Place Value and Face Value | Grouping the Digits

    Oct 09, 24 05:16 PM

    Place Value of 3-Digit Numbers
    The place value of a digit in a number is the value it holds to be at the place in the number. We know about the place value and face value of a digit and we will learn about it in details. We know th…

    Read More

  5. 3-digit Numbers on an Abacus | Learning Three Digit Numbers | Math

    Oct 08, 24 10:53 AM

    3-Digit Numbers on an Abacus
    We already know about hundreds, tens and ones. Now let us learn how to represent 3-digit numbers on an abacus. We know, an abacus is a tool or a toy for counting. An abacus which has three rods.

    Read More