Subscribe to our YouTube channel for the latest videos, updates, and tips.


Division of Line Segment

Here we will discuss about internal and external division of line segment.

To find the co-ordinates of the point dividing the line segment joining two given points in a given ratio:

(i) Internal Division of line segment:

Let (x₁, y₁) and (x₂, y₂) be the cartesian co-ordinates of the points P and Q respectively referred to rectangular co-ordinate axes OX and OY and the point R divides the line-segment PQ internally in a given ratio m : n (say), i.e., PR : RQ = m : n. We are to find the co-ordinates of R.

Internal Division of line segment

Let, (x, y) be the required co-ordinate of R . From P, Q and R, draw PLQM and RN perpendiculars on OX. Again, draw PT parallel to OX to cut RN at S and QM at T.

Then, 

PS = LN = ON - OL = x – x₁;

PT = LM = OMOL = x₂ - x₁;

RS = RNSN = RNPL = y - y₁;

and QT = QMTM = QMPL = y₂ – y₁

Again, PR/RQ = m/n

or, RQ/PR = n/m

or, RQ/PR + 1 = n/m + 1

or, (RQ + PR/PR) = (m + n)/m

o, PQ/PR = (m + n)/m

Now, by construction, the triangles PRS and PQT are similar; hence,

PS/PT = RS/QT = PR/PQ

Taking, PS/PT = PR/PQ we get,

(x - x₁)/(x₂ - x₁) = m/(m + n)

or, x (m + n) – x₁ (m + n) = mx₂ – mx₁

or, x ( m + n) = mx₂ - mx₁ + m x₁ + nx₁ = mx₂ + nx₁

Therefore, x = (mx2 + nx1)/(m + n)

Again, taking RS/QT = PR/PQ we get,

(y - y₁)/(y₂ - y₁) = m/(m + n)

or, ( m + n) y - ( m + n) y₁ = my₂ – my₁

or, ( m+ n)y = my₂ – my₁ + my₁ + ny₁ = my₂ + ny₁

Therefore, y = (my₂ + ny₁)/(m + n)

Therefore, the required co-ordinates of the point R are

((mx₂ + nx₁)/(m + n), (my₂ + ny₁)/(m + n))


(ii) External Division of line segment:

Let (x₁, y₁) and (x₂, y₂) be the cartesian co-ordinates of the points P and Q respectively referred to rectangular co-ordinate axes OX and OY and the point R divides the line-segment PQ externally in a given ratio m : n (say) i.e., PR : RQ = m : n. We are to find the co-ordinates of R.

External Division of line segment


Let, (x, y) be the required co-ordinates of R. Draw PL, QM and RN perpendiculars on OX. Again, draw PT parallel to OX to cut RN at S and QM and RN at S and T respectively, Then,

PS = LM = OM - OL = x₂ – x₁;

PT = LN = ONOL = x – x₁;

QT = QMSM = QMPL = y₂ – y₁

and RT = RNTN = RNPL = y — y₁

Again, PR/RQ = m/n

or, QR/PR = n/m

or, 1 - QR/PR = 1 - n/m

or, PR - RQ/PR = (m - n)/m

or, PQ/PR = (m - n)/m

Now, by construction, the triangles PQS and PRT are similar; hence,

PS/PT = QS/RT = PQ/PR

Taking, PS/PT = PQ/PR we get,

(x₂ - x₁)/(x - x₁) = (m - n)/m

or, (m – n)x - x₁(m – n) = m (x₂ - x₁)

or, (m - n)x = mx₂ – mx₁ + mx₁ - nx₁ = mx₂ - nx₁.

Therefore, x = (mx₂ - nx₁)/(m - n)

Again, taking QS/RT = PQ/PR we get,

(y₂ - y₁)/(y - y₁) = (m - n)/m

or, (m – n)y - (m – n)y₁ = m(y₂ - y₁)

or, (m - n)y = my₂ – my₁ + my₁ - ny₁ = my₂ - ny₁

Therefore, x = (my₂ - ny₁)/(m - n)

Therefore, the co-ordinates of the point R are

((mx₂ - nx₁)/(m - n), (my₂ - ny₁)/(m - n))



Corollary: To find the co-ordinates of the middle point of a given line segment:

midpoint formula

Let (x₁, y₁) and (x₂, y₂) he the co-ordinates of the points P and Q respectively and R, the mid-point of the line segment PQ. To find the co-ordinates R. Clearly, the point R divides the line segment PQ internally in the ratio 1 : 1; hence, the co-ordinates of R are ((x₁ + x₂)/2, (y₁ + y₂)/2). [Putting m = n the co-ordinates or R of ((mx₂ + nx₁)/(m + n), (my₂ + ny₁)/(m + n))]. This formula is also known as midpoint formula. By using this formula we can easily find the midpoint between the two co-ordinates.


Example on Division of Line Segment:

1. A diameter of a circle has the extreme points (7, 9) and (-1, -3). What would be the co-ordinates of the centre?

Solution:

Clearly, the mid-point of the given diameter is the centre of the circle. Therefore, the required co-ordinates of the centre of the circle = the co-ordinates of the mid-point of the line-segment joining the points (7, 9) and (- 1, - 3)

= ((7 - 1)/2, (9 - 3)/2) = (3, 3).



2. A point divides internally the line- segment joining the points (8, 9) and (-7, 4) in the ratio 2 : 3. Find the co-ordinates of the point.

Solution:

Let (x, y) be the co-ordinates of the point which divides internally the line-segment joining the given points. Then,

x = (2 ∙ (- 7) + 3 ∙ 8)/(2 + 3) = (-14 + 24)/5 = 10/5 = 2

And y = (2 ∙ 4 + 3 ∙ 9)/(2 + 3) = (8 + 27)/5 = 35/5 = 5

Therefore, the co-ordinates of the required point are (2, 7).

[Note: To get the co-ordinates of the point in question we have used formula, x = (mx₁ + n x₁)/(m + n) and y = my₂ + ny₁)/(m + n).

For the given problem, x₁ = 8, y₁ = 9, x₂ = -7, y₂ = 4, m = 2 and n = 3.]



3. A (4, 5) and B (7, - 1) are two given points and the point C divides the line-segment AB externally in the ratio 4 : 3. Find the co-ordinates of C.

Solution:

Let (x, y) be the required co-ordinates of C. Since C divides the line-segment AB externally in the ratio 4 : 3 hence,

x = (4 ∙ 7 - 3 ∙ 4)/(4 - 3) = (28 - 12)/1 = 16

And y = (4 ∙ (-1) - 3 ∙ 5)/(4 - 3) = (-4 - 15)/1 = -19

Therefore, the required co-ordinates of C are (16, - 19).

[Note: To get the co-ordinate of C we have used formula, 

x = (mx₁ + n x₁)/(m + n) and y = my₂ + ny₁)/(m + n).

In the given problem, x₁ = 4, y₁ = 5, x₂ = 7, y₂ = - 1, m = 4 and n = 3].


4. Find the ratio in which the line-segment joining the points (5, - 4) and (2, 3) is divided by the x-axis.

Solution:

Let the given points be A (5, - 4) and B (2, 3) and x-axis. intersects the line-segment ¯(AB )at P such that AP : PB = m : n. Then the co-ordinates of P are ((m ∙ 2 + n ∙ 5)/(m + n), (m ∙ 3 + n ∙ (-4))/(m + n)). Clearly, the point P lies on the x-axis ; hence, y co-ordinate of P must be zero.

Therefore, (m ∙ 3 + n ∙ (-4))/(m + n) = 0

or, 3m - 4n = 0

or, 3m = 4n

or, m/n = 4/3

Therefore, the x-axis divides the line-segment joining the given points internally in 4 : 3.


5. Find the ratio in which the point (- 11, 16) divides the '-line segment joining the points (- 1, 2) and (4, - 5).

Solution:

Let the given points be A (- 1, 2) and B (4, - 5) and the line-segment AB is divided in the ratio m : n at (- 11, 16). Then we must have,

-11 = (m ∙ 4 + n ∙ (-1))/(m + n)

or, -11m - 11n = 4m - n

or, -15m = 10n

or, m/n = 10/-15 = - 2/3

Therefore, the point (- 11, 16) divides the line-segment ¯BA externally in the ratio 3 : 2.

[Note: (i) A point divides a given line-segment internally or externally in a definite ratio according as the value of m:n is positive or negative.

(ii) See that we can obtain the same ratio m : n = - 2 : 3 using the condition 16 = (m ∙ (-5) +n ∙ 2)/(m + n)]

 Co-ordinate Geometry 





11 and 12 Grade Math 

From Division of Line Segment to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Circle Worksheet | Free Worksheet with Answer |Practice Math

    Jul 10, 25 11:41 AM

    Radii of the circRadii, Chords, Diameters, Semi-circles
    In 5th Grade Circle Worksheet you will get different types of questions on parts of a circle, relation between radius and diameter, interior of a circle, exterior of a circle and construction of circl…

    Read More

  2. Construction of a Circle | Working Rules | Step-by-step Explanation |

    Jul 09, 25 01:29 AM

    Parts of a Circle
    Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jul 08, 25 02:32 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Addition & Subtraction Together |Combination of addition & subtraction

    Jul 08, 25 02:23 PM

    Addition and Subtraction Together Problem
    We will solve the different types of problems involving addition and subtraction together. To show the problem involving both addition and subtraction, we first group all the numbers with ‘+’ and…

    Read More

  5. 5th Grade Circle | Radius, Interior and Exterior of a Circle|Worksheet

    Jul 08, 25 09:55 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More