Condition of Collinearity of Three Points

Here we will learn about condition of collinearity of three points.

How to find the condition of collinearity of three given points?

First Method:

Let us assume that the three non-coincident points A (x₁, y₁), B (x₂, y₂) and C (x₃, y₃) are collinear. Then, one of these three points will divide the line segment joining the other two internally in a definite ratio. Suppose, the point B divides the line segment  AC  internally in the ratio λ : 1. 

Hence, we have, 

(λx₃ + 1 ∙ x₁)/(λ + 1) = x₂ …..(1) 

and (λy₃ + 1 ∙ y₁)/(λ+1) = y₂ ..…(2) 

From (1) we get, 

λx₂ + x₂ = λx₃ + x₁

or, λ (x₂ - x₃) = x₁ - x₂

or, λ = (x₁ - x₂)/(x₂ - x₃)

Similarly, from (2) we get, λ = (y₁ - y₂)/(y₂ - y₃)

Therefore, (x₁ - x₂)/(x₂ - x₃) = (y₁ -y₂)/(y₂ - y₃)

or, (x₁ - x ₂)(y₂ - y₃) = (y₁ - y₂) (x₂ - x₃ )

or, x₁ (y₂ - y₃) + x₂ y₃ - y₁) + x₃ (y₁ - y₂) = 0

which is the required condition of collinearity of-the three given points.


Second Method: 

Let A (x₁, y₁), B (x₂, y₂) and C (x₃, y₃)be three non-coincident points and they are collinear. Since area of a triangle = ½ ∙ base × altitude, hence it is evident that the altitude of the triangle ABC is zero, when the points A, B, and C are collinear. Thus, the area of the triangle is zero if the points A, B and Care collinear. Therefore, the required condition of collinearity is

1/2 [x₁ (y₂ - y₃) + x₂(y₃ - y₁) + x₃ (y₁ - y₂)] = 0

or, x₁ (y₂ - y₃) + x₂ (y₃ - y₁) + x₃ (y₁ - y₂) = 0.

Examples on Condition of Collinearity of Three Points: 

1. Show that the points (0, -2) , (2, 4) and (-1, -5) are collinear. 


Solution:

The area of the triangle formed by joining the given points

= 1/2 [(0 - 10 + 2) - (-4 -4 + 0)] = 1/2 (-8 + 8) = 0.

Since the area of the triangle formed by joining the given points is zero, hence the given points are collinear. Proved



2. Show that the straight line joining the points (4, -3) and (-8, 6) passes through the origin.

Solution:

The area of the triangle formed by joining the points (4, -3), (-8, 6) and (0, 0) is 1/2 [24 - 24] = 0.

Since the area of the triangle formed by joining the points (4, -3), (-8, 6) and (0, 0) is zero, hence the three points are collinear : therefore, the straight line joining the points (4, -3) and (-8, 6)passes through the origin.


3. Find the condition that the points (a, b), (b, a) and (a², – b²) are in a straight line.

Solution:

Since the three given points are in a straight line, hence the area of the triangle formed by the points must be zero.

Therefore, 1/2 | (a² - b³ + a²b) – (b² + a³ - ab²) | = 0

or, a² - b³ + a²b – b² – a³ + ab² = 0

or, a² – b² – (a³ + b³) + ab (a + b) = 0

or, (a + b) [a - b - (a² - ab + b²) + ab] = 0

or, (a + b) [(a - b)- (a² - ab + b² - ab)] = 0

or, (a + b) [(a - b) - (a - b)²] = 0

or, (a + b) (a - b) (1 - a + b) = 0

Therefore, either a + b = 0 or, a – b = 0 or, 1 - a + b = 0.

 Co-ordinate Geometry 



11 and 12 Grade Math

Form Condition of Collinearity of Three Points to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Formation of Greatest and Smallest Numbers | Arranging the Numbers

    May 19, 24 03:36 PM

    Formation of Greatest and Smallest Numbers
    the greatest number is formed by arranging the given digits in descending order and the smallest number by arranging them in ascending order. The position of the digit at the extreme left of a number…

    Read More

  2. Formation of Numbers with the Given Digits |Making Numbers with Digits

    May 19, 24 03:19 PM

    In formation of numbers with the given digits we may say that a number is an arranged group of digits. Numbers may be formed with or without the repetition of digits.

    Read More

  3. Arranging Numbers | Ascending Order | Descending Order |Compare Digits

    May 19, 24 02:23 PM

    Arranging Numbers
    We know, while arranging numbers from the smallest number to the largest number, then the numbers are arranged in ascending order. Vice-versa while arranging numbers from the largest number to the sma…

    Read More

  4. Comparison of Numbers | Compare Numbers Rules | Examples of Comparison

    May 19, 24 01:26 PM

    Rules for Comparison of Numbers
    Rule I: We know that a number with more digits is always greater than the number with less number of digits. Rule II: When the two numbers have the same number of digits, we start comparing the digits…

    Read More

  5. Worksheets on Comparison of Numbers | Find the Greatest Number

    May 19, 24 10:42 AM

    Comparison of Two Numbers
    In worksheets on comparison of numbers students can practice the questions for fourth grade to compare numbers. This worksheet contains questions on numbers like to find the greatest number, arranging…

    Read More