# Medians of a Triangle are Concurrent

Proof the medians of a triangle are concurrent using co-ordinate geometry.

To proof this theorem we need to use the formula of co-ordinates of the point dividing the line segment joining two given points in a given ratio and the mid-point formula.

Let (x₁, y₁), (x₂, y₂) and (x₃, y₃) be the rectangular cartesian co-ordinates of the vertices M, N and O respectively of the triangle MNO. If P, Q and R be the mid-points of the sides NO, OM and MN respectively, then the co-ordinates of P, Q and R are ((x₂ + x₃)/2, (y₂ + y₃)/2)) , ((x₃ + x₁)/2 , (y₁ + y₂)/2)) respectively.

Now, we take a point G₁ on the median MP such that MG₁, G₁P = 2 : 1. Then the co-ordinates of G₁ are

= ((x₁ + x₂ + x₃)/3, (y₁ + y₂ + y₃)/3)

Again, we take a point G₂ on the median NQ such that NG₂ : G₂Q = 2 : 1. Then the co-ordinates of G₂ are

= ((x₁ + x₂ + x₃)/3, (y₁ + y₂ + y₃)/3)

Finally, we take a point G₃ on the median OR such that OG₃ : G₃R = 2 : 1. Then the co-ordinates of G₃ are

= {(x₁ + x₂ + x₃)/3, (y₁ + y₂ + y₃)/3}

Thus we see that G₁, G₂ and G₃ are the same point. Hence, the medians of the triangle are concurrent and at the point of concurrence the medians are divided in the ratio 2 : 1.

Note:

The point of concurrence of the medians of the triangle MNO is called its centroid and the co-ordinates of the centroid are {(x₁ + x₂ + x₃)/3, (y₁ + y₂ + y₃)/3}

Worked-out examples on medians of a triangle are concurrent:

1. If the Co-ordinates of the three verticals of a triangle are (-2, 5), (-4, -3) and (6, -2), find the Co-ordinates of the centroid of the triangle.

Solution:

The Co-ordinates of the centroid of the triangle formed by the joining the given points are {(- 2 - 4 + 6)/3}, (5 - 3 - 2)/3)}

[Using the formula {(x₁ + x₂ + x₃)/3, (y₁ + y₂ + y₃)/3}]

= (0, 0).

2. The co-ordinates of the vertices A, B, C of the triangle ABC are (7, -3), (x, 8) and (4, y) respectively; if the co-ordinates of the centroid of the triangle be (2, -1), find x and y.

Solution:

Clearly, the co-ordinates of the centroid of the triangle ABC are

{(7 + x + 4)/3, (- 3 + 8 + y)/3)} = {(11 + x)/3, (5 + y)/3}.

By problem, (11 + x)/3 = 2

or, 11 + x = 6

or x = -5

And (5 + y)/3 = -1

or, (5 + y) = -3

or, y = -8.

Therefore, x = -5 and y = -8

3. The co-ordinates of the vertex A of the triangle ABC are (7, -4). If the co-ordinates of the centroid of the triangle be (1, 2), find the co-ordinates of the mid-point of the side BC.

Solution:

Let G (1, 2) be the centroid of the triangle ABC and D (h, k) be the mid-point of the side BC.

Since G (1, 2) divides the median AD internally in the ratio 2 : 1, hence we must have,

(2 ∙ h + 1 ∙ 7)/(2 + 1) = 1

or, 2h + 7 = 3

or, 2h = -4

or, h = -2

And {2 ∙ k + 1 ∙ (-4)}/(2 + 1) = 2

or, 2k - 4 = 6

or, 2k = 10

or, k = 5.

Therefore, the co-ordinates of the mid-point of the side BC are (-2, 5).

Co-ordinate Geometry

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

## Recent Articles

1. ### Types of Fractions |Proper Fraction |Improper Fraction |Mixed Fraction

Mar 02, 24 05:31 PM

The three types of fractions are : Proper fraction, Improper fraction, Mixed fraction, Proper fraction: Fractions whose numerators are less than the denominators are called proper fractions. (Numerato…

2. ### Subtraction of Fractions having the Same Denominator | Like Fractions

Mar 02, 24 04:36 PM

To find the difference between like fractions we subtract the smaller numerator from the greater numerator. In subtraction of fractions having the same denominator, we just need to subtract the numera…

3. ### Addition of Like Fractions | Examples | Worksheet | Answer | Fractions

Mar 02, 24 03:32 PM

To add two or more like fractions we simplify add their numerators. The denominator remains same. Thus, to add the fractions with the same denominator, we simply add their numerators and write the com…

4. ### Comparison of Unlike Fractions | Compare Unlike Fractions | Examples

Mar 01, 24 01:42 PM

In comparison of unlike fractions, we change the unlike fractions to like fractions and then compare. To compare two fractions with different numerators and different denominators, we multiply by a nu…