Medians of a Triangle are Concurrent

Proof the medians of a triangle are concurrent using co-ordinate geometry.

To proof this theorem we need to use the formula of co-ordinates of the point dividing the line segment joining two given points in a given ratio and the mid-point formula.

Medians of a triangle are concurrent

Let (x₁, y₁), (x₂, y₂) and (x₃, y₃) be the rectangular cartesian co-ordinates of the vertices M, N and O respectively of the triangle MNO. If P, Q and R be the mid-points of the sides NO, OM and MN respectively, then the co-ordinates of P, Q and R are ((x₂ + x₃)/2, (y₂ + y₃)/2)) , ((x₃ + x₁)/2 , (y₁ + y₂)/2)) respectively.


Now, we take a point G₁ on the median MP such that MG₁, G₁P = 2 : 1. Then the co-ordinates of G₁ are

Using mid point formula


= ((x₁ + x₂ + x₃)/3, (y₁ + y₂ + y₃)/3)



Again, we take a point G₂ on the median NQ such that NG₂ : G₂Q = 2 : 1. Then the co-ordinates of G₂ are 

Use mid point theorem


= ((x₁ + x₂ + x₃)/3, (y₁ + y₂ + y₃)/3)

Finally, we take a point G₃ on the median OR such that OG₃ : G₃R = 2 : 1. Then the co-ordinates of G₃ are

Point of Concurrence


= {(x₁ + x₂ + x₃)/3, (y₁ + y₂ + y₃)/3}

Thus we see that G₁, G₂ and G₃ are the same point. Hence, the medians of the triangle are concurrent and at the point of concurrence the medians are divided in the ratio 2 : 1.


Note:

The point of concurrence of the medians of the triangle MNO is called its centroid and the co-ordinates of the centroid are {(x₁ + x₂ + x₃)/3, (y₁ + y₂ + y₃)/3}

Worked-out examples on medians of a triangle are concurrent: 

1. If the Co-ordinates of the three verticals of a triangle are (-2, 5), (-4, -3) and (6, -2), find the Co-ordinates of the centroid of the triangle.

Solution:

The Co-ordinates of the centroid of the triangle formed by the joining the given points are {(- 2 - 4 + 6)/3}, (5 - 3 - 2)/3)}

[Using the formula {(x₁ + x₂ + x₃)/3, (y₁ + y₂ + y₃)/3}]

= (0, 0).


2. The co-ordinates of the vertices A, B, C of the triangle ABC are (7, -3), (x, 8) and (4, y) respectively; if the co-ordinates of the centroid of the triangle be (2, -1), find x and y.

Solution:

Clearly, the co-ordinates of the centroid of the triangle ABC are

{(7 + x + 4)/3, (- 3 + 8 + y)/3)} = {(11 + x)/3, (5 + y)/3}.

By problem, (11 + x)/3 = 2

or, 11 + x = 6

or x = -5


And (5 + y)/3 = -1

or, (5 + y) = -3

or, y = -8.

Therefore, x = -5 and y = -8



3. The co-ordinates of the vertex A of the triangle ABC are (7, -4). If the co-ordinates of the centroid of the triangle be (1, 2), find the co-ordinates of the mid-point of the side BC.

Solution:

Let G (1, 2) be the centroid of the triangle ABC and D (h, k) be the mid-point of the side BC.

Since G (1, 2) divides the median AD internally in the ratio 2 : 1, hence we must have,

(2 ∙ h + 1 ∙ 7)/(2 + 1) = 1

or, 2h + 7 = 3

or, 2h = -4

or, h = -2

And {2 ∙ k + 1 ∙ (-4)}/(2 + 1) = 2

or, 2k - 4 = 6

or, 2k = 10

or, k = 5.

Therefore, the co-ordinates of the mid-point of the side BC are (-2, 5).


 Co-ordinate Geometry 




11 and 12 Grade Math

From Medians of a Triangle are Concurrent to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Perimeter of a Square | How to Find the Perimeter of Square? |Examples

    Apr 25, 24 05:34 PM

    Perimeter of a Square
    We will discuss here how to find the perimeter of a square. Perimeter of a square is the total length (distance) of the boundary of a square. We know that all the sides of a square are equal. Perimete…

    Read More

  2. Perimeter of a Triangle | Perimeter of a Triangle Formula | Examples

    Apr 25, 24 05:13 PM

    Perimeter of a Triangle
    We will discuss here how to find the perimeter of a triangle. We know perimeter of a triangle is the total length (distance) of the boundary of a triangle. Perimeter of a triangle is the sum of length…

    Read More

  3. Perimeter of a Rectangle | How to Find the Perimeter of a Rectangle?

    Apr 25, 24 03:45 PM

    Perimeter of a Rectangle
    We will discuss here how to find the perimeter of a rectangle. We know perimeter of a rectangle is the total length (distance) of the boundary of a rectangle. ABCD is a rectangle. We know that the opp…

    Read More

  4. Dividing 3-Digit by 1-Digit Number | Long Division |Worksheet Answer

    Apr 24, 24 03:46 PM

    Dividing 3-Digit by 1-Digit Number
    Dividing 3-Digit by 1-Digit Numbers are discussed here step-by-step. How to divide 3-digit numbers by single-digit numbers? Let us follow the examples to learn to divide 3-digit number by one-digit nu…

    Read More

  5. Symmetrical Shapes | One, Two, Three, Four & Many-line Symmetry

    Apr 24, 24 03:45 PM

    Symmetrical Figures
    Symmetrical shapes are discussed here in this topic. Any object or shape which can be cut in two equal halves in such a way that both the parts are exactly the same is called symmetrical. The line whi…

    Read More