Medians of a Triangle are Concurrent

Proof the medians of a triangle are concurrent using co-ordinate geometry.

To proof this theorem we need to use the formula of co-ordinates of the point dividing the line segment joining two given points in a given ratio and the mid-point formula.

Medians of a triangle are concurrent

Let (x₁, y₁), (x₂, y₂) and (x₃, y₃) be the rectangular cartesian co-ordinates of the vertices M, N and O respectively of the triangle MNO. If P, Q and R be the mid-points of the sides NO, OM and MN respectively, then the co-ordinates of P, Q and R are ((x₂ + x₃)/2, (y₂ + y₃)/2)) , ((x₃ + x₁)/2 , (y₁ + y₂)/2)) respectively.


Now, we take a point G₁ on the median MP such that MG₁, G₁P = 2 : 1. Then the co-ordinates of G₁ are

Using mid point formula


= ((x₁ + x₂ + x₃)/3, (y₁ + y₂ + y₃)/3)



Again, we take a point G₂ on the median NQ such that NG₂ : G₂Q = 2 : 1. Then the co-ordinates of G₂ are 

Use mid point theorem


= ((x₁ + x₂ + x₃)/3, (y₁ + y₂ + y₃)/3)

Finally, we take a point G₃ on the median OR such that OG₃ : G₃R = 2 : 1. Then the co-ordinates of G₃ are

Point of Concurrence


= {(x₁ + x₂ + x₃)/3, (y₁ + y₂ + y₃)/3}

Thus we see that G₁, G₂ and G₃ are the same point. Hence, the medians of the triangle are concurrent and at the point of concurrence the medians are divided in the ratio 2 : 1.


Note:

The point of concurrence of the medians of the triangle MNO is called its centroid and the co-ordinates of the centroid are {(x₁ + x₂ + x₃)/3, (y₁ + y₂ + y₃)/3}

Worked-out examples on medians of a triangle are concurrent: 

1. If the Co-ordinates of the three verticals of a triangle are (-2, 5), (-4, -3) and (6, -2), find the Co-ordinates of the centroid of the triangle.

Solution:

The Co-ordinates of the centroid of the triangle formed by the joining the given points are {(- 2 - 4 + 6)/3}, (5 - 3 - 2)/3)}

[Using the formula {(x₁ + x₂ + x₃)/3, (y₁ + y₂ + y₃)/3}]

= (0, 0).


2. The co-ordinates of the vertices A, B, C of the triangle ABC are (7, -3), (x, 8) and (4, y) respectively; if the co-ordinates of the centroid of the triangle be (2, -1), find x and y.

Solution:

Clearly, the co-ordinates of the centroid of the triangle ABC are

{(7 + x + 4)/3, (- 3 + 8 + y)/3)} = {(11 + x)/3, (5 + y)/3}.

By problem, (11 + x)/3 = 2

or, 11 + x = 6

or x = -5


And (5 + y)/3 = -1

or, (5 + y) = -3

or, y = -8.

Therefore, x = -5 and y = -8



3. The co-ordinates of the vertex A of the triangle ABC are (7, -4). If the co-ordinates of the centroid of the triangle be (1, 2), find the co-ordinates of the mid-point of the side BC.

Solution:

Let G (1, 2) be the centroid of the triangle ABC and D (h, k) be the mid-point of the side BC.

Since G (1, 2) divides the median AD internally in the ratio 2 : 1, hence we must have,

(2 ∙ h + 1 ∙ 7)/(2 + 1) = 1

or, 2h + 7 = 3

or, 2h = -4

or, h = -2

And {2 ∙ k + 1 ∙ (-4)}/(2 + 1) = 2

or, 2k - 4 = 6

or, 2k = 10

or, k = 5.

Therefore, the co-ordinates of the mid-point of the side BC are (-2, 5).


 Co-ordinate Geometry 




11 and 12 Grade Math

From Medians of a Triangle are Concurrent to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. How to Do Long Division? | Method | Steps | Examples | Worksheets |Ans

    Jan 23, 25 02:43 PM

    Long Division and Short Division Forms
    As we know that the division is to distribute a given value or quantity into groups having equal values. In long division, values at the individual place (Thousands, Hundreds, Tens, Ones) are dividend…

    Read More

  2. Long Division Method with Regrouping and without Remainder | Division

    Jan 23, 25 02:25 PM

    Dividing a 2-Digits Number by 1-Digit Number With Regrouping
    We will discuss here how to solve step-by-step the long division method with regrouping and without remainder. Consider the following examples: 468 ÷ 3

    Read More

  3. Long Division Method Without Regrouping and Without Remainder | Divide

    Jan 23, 25 10:44 AM

    Dividing a 2-Digits Number by 1-Digit Number
    We will discuss here how to solve step-by-step the long division method without regrouping and without remainder. Consider the following examples: 1. 848 ÷ 4

    Read More

  4. Relationship between Multiplication and Division |Inverse Relationship

    Jan 23, 25 02:00 AM

    We know that multiplication is repeated addition and division is repeated subtraction. This means that multiplication and division are inverse operation. Let us understand this with the following exam…

    Read More

  5. Divide by Repeated Subtraction | Division as Repeated Subtraction

    Jan 22, 25 02:23 PM

    Divide by Repeated Subtraction
    How to divide by repeated subtraction? We will learn how to find the quotient and remainder by the method of repeated subtraction a division problem may be solved.

    Read More