Distance between Two Points in Polar Co-ordinates


How to find the distance between two points in polar Co-ordinates?

Distance between Two Points in Polar Co-ordinates


Let OX be the initial line through the pole O of the polar system and (r₁, θ ₁) and (r₂, θ₂) the polar co-ordinates of the points P and Q respectively. Then, OP₁ = r₁, OQ = r₂, ∠XOP = θ₁ and ∠XOQ = θ₂, Therefore, ∠POQ = θ₂ – θ₁. 

From triangle POQ we get,

PQ² = OP² + OQ² – 2 ∙ OP ∙ OQ ∙ cos∠POQ

    = r₁² + r₂² – 2r₁ r₂ cos(θ₂ - θ₁)

Therefore, PQ = √[r₁² + r₂ ² - 2r₁ r₂ cos⁡(θ₂ - θ₁)].

Second Method: Let us choose origin and positive x-axis of the cartesian system as the pole and initial line respectively of the polar system. If (x₁, y₁) , (x₂, y₂) and (r₁, θ₁) (r₂, θ₂) be the respective Cartesian and polar co-ordinates of the points P and Q, then we shall have,

    x₁ = y₁ cos θ₁,     y₁ = r₁ sin θ₁

and


    x₂ = r₂ cos θ₂,     y₂ = r₂ sin θ₂.

Now, the distance between the points P and Q is

PQ = √[(x₂ - x₁)² + (y₂ - y₁)²]

     = √[(r₂ cos θ₂ - r₁ cos θ₁)² + (r₂ sin θ₂ - r₂ sin θ₂)²]

     = √[r₂² cos² θ₂ + r₁ ² cos² θ₁ - 2 r₁r₂ cos θ₁ cos θ₂ + r₂² sin² θ₂ + r₁²sin² θ₁ - 2 r₁r₁ sin θ₁ sin θ₂]

     = √[r₂² + r₁² - 2r₁ r₂ Cos(θ₂ - θ₁)].



Example on distance between two points in polar Co-ordinates:

Find the length of the line-segment joining the points (4, 10°) and (2√3 ,40°).

Solution:

We know that the length of the line-segment joining the points (r₁, θ₁),and (r₂, θ₂), is

     √[ r₂² + r₁² - 2r₁ r₂ Cos(θ₂ - θ₁)].

Therefore, the length of the line-segment joining the given points

     = √{(4² + (2√3)² - 2 ∙ 4 ∙ 2√(3) Cos(40 ° - 10°)}

     = √(16 + 12 - 16√3 ∙ √3/2)

     = √(28 - 24)

     = √4

     = 2 units.

 Co-ordinate Geometry 




11 and 12 Grade Math 

From Distance between Two Points in Polar Co-ordinates to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. What is Area in Maths? | Units to find Area | Conversion Table of Area

    Jul 17, 25 01:06 AM

    Concept of Area
    The amount of surface that a plane figure covers is called its area. It’s unit is square centimeters or square meters etc. A rectangle, a square, a triangle and a circle are all examples of closed pla…

    Read More

  2. Worksheet on Perimeter | Perimeter of Squares and Rectangle | Answers

    Jul 17, 25 12:40 AM

    Most and Least Perimeter
    Practice the questions given in the worksheet on perimeter. The questions are based on finding the perimeter of the triangle, perimeter of the square, perimeter of rectangle and word problems. I. Find…

    Read More

  3. Formation of Square and Rectangle | Construction of Square & Rectangle

    Jul 16, 25 11:46 PM

    Construction of a Square
    In formation of square and rectangle we will learn how to construct square and rectangle. Construction of a Square: We follow the method given below. Step I: We draw a line segment AB of the required…

    Read More

  4. Perimeter of a Figure | Perimeter of a Simple Closed Figure | Examples

    Jul 16, 25 02:33 AM

    Perimeter of a Figure
    Perimeter of a figure is explained here. Perimeter is the total length of the boundary of a closed figure. The perimeter of a simple closed figure is the sum of the measures of line-segments which hav…

    Read More

  5. Formation of Numbers | Smallest and Greatest Number| Number Formation

    Jul 15, 25 11:46 AM

    In formation of numbers we will learn the numbers having different numbers of digits. We know that: (i) Greatest number of one digit = 9,

    Read More