Processing math: 100%

Subscribe to our YouTube channel for the latest videos, updates, and tips.


Circle Passing Through Three Given Points

We will learn how to find the equation of a circle passing through three given points.

Let P (x1, y1), Q (x2, y2) and R (x3, y3) are the three given points.

We have to find the equation of the circle passing through the points P, Q and R.

Let the equation of the general form of the required circle be x2 + y2 + 2gx + 2fy + c = 0 ……………. (i)

According to the problem, the above equation of the circle passes through the points P (x1, y1), Q (x2, y2) and R (x3, y3). Therefore,

x12 + y12 + 2gx1 + 2fy1 + c = 0 ……………. (ii)

x22 + y22 + 2gx2 + 2fy2 + c = 0 ……………. (iii)

and  x32 + y32 + 2gx3 + 2fy3 + c = 0 ……………. (iv)

Form the above there equations (ii), (iii) and (iv) find the value of g, f and c. Then substituting the values of g, f and c in (i) we can find the required equation of the circle.

 

Solved examples to find the equation of the circle passing through three given points:

1. Find the equation of the circle passes through three points (1, 0), (-1, 0) and (0, 1).

Solution:

Let the equation of the general form of the required circle be x2 + y2 + 2gx + 2fy + c = 0 ……………. (i)

According to the problem, the above equation of the circle passes through the points (1, 0), (-1, 0) and (0, 1). Therefore,

1 + 2g + c = 0 ……………. (ii)

1 - 2g + c = 0  ……………. (iii)

1 + 2f + c = 0  ……………. (iv)

Subtracting (iii) form (i), we get 4g = 0 ⇒ g = 0.

Putting g = 0 in (ii), we obtain c = -1. Now putting c = -1 in (iv), we get f = 0.

Substituting the values of g, f and c in (i), we obtain the equation of the required circle as x2 + y2 = 1.

 

2. Find the equation of the circle passes through three points (1, - 6), (2, 1) and (5, 2). Also find the co-ordinate of its centre and the length of the radius.

Solution:     

Let the equation of the required circle be

x2 + y2 + 2gx + 2fy + c = 0 ……………….(i)

According to the problem, the above equation passes through the coordinate points (1, - 6), (2, 1) and (5, 2).

Therefore, substituting the coordinates of three points (1, - 6), (2, 1) and (5, 2) successively in equation (i) we get,

For the point (1, - 6): 1 + 36 + 2g - 12f + c = 0         

⇒ 2g - 12f + c =  -37 ……………….(ii)

For the point (2, 1):  4 + 1 + 4g + 2f + c  = 0   

⇒ 4g + 2f + c =- 5 ……………….(iii)

For the point (5, 2):  25 + 4 + 10g + 4f + c = 0  

⇒ 10g + 4f + c = -29 ……………….(iv)

Subtracting (ii) from (iii) we get,

2g + 14f = 32

⇒ g + 7f = 16 ……………….(v)

Again, Subtracting (ii) form (iv) we get,

8g + 16f = 8      

⇒ g + 2f = 1 ……………….(vi)

Now, solving equations (v) and (vi) we get, g = - 5 and f = 3.

Putting the values of g and f in (iii) we get, c = 9.

Therefore, the equation of the required circle is x2 + y2 - 10x + 6y + 9 = 0

Thus, the co-ordinates of its centre are (- g, - f) = (5, - 3) and radius = g2+f2c = 25+99
 = √25 = 5 units.

 The Circle




11 and 12 Grade Math 

From Circle Passing Through Three Given Points to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 5th Grade Circle Worksheet | Free Worksheet with Answer |Practice Math

    Jul 10, 25 11:41 AM

    Radii of the circRadii, Chords, Diameters, Semi-circles
    In 5th Grade Circle Worksheet you will get different types of questions on parts of a circle, relation between radius and diameter, interior of a circle, exterior of a circle and construction of circl…

    Read More

  2. Construction of a Circle | Working Rules | Step-by-step Explanation |

    Jul 09, 25 01:29 AM

    Parts of a Circle
    Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jul 08, 25 02:32 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Addition & Subtraction Together |Combination of addition & subtraction

    Jul 08, 25 02:23 PM

    Addition and Subtraction Together Problem
    We will solve the different types of problems involving addition and subtraction together. To show the problem involving both addition and subtraction, we first group all the numbers with ‘+’ and…

    Read More

  5. 5th Grade Circle | Radius, Interior and Exterior of a Circle|Worksheet

    Jul 08, 25 09:55 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More