Rules to Add Integers


The rules to add integers are as follows:

Rule 1:

When the two integers have the positive sign, add the integers and assign the (+) sign to the sum.

Combination One:

(positive + positive) or (+ plus +)

For example:

Find the sum of the integers.


(i) 8 + 19 = 27

(ii) 33 + 25 = 58

(iii) 42 + 91 = 133

(iv) 59 + 87 = 146

Note:

Here, we have two integers having the same (+) sign. So, we add the numbers and attach (+) sign to the sum.



Rule 2:

When the two integers have the negative sign, add the integers and assign the (-) sign to the sum.

Combination Two:

(negative + negative) or (- plus -)


For example:


Find the sum of the integers.

(i) (-7) + (-9) = -16

(ii) (-23) + (-15) = -38

(iii) (-41) + (-57) = -98

(iv) (-119) + (-137) = -256

Note:

Here, both the integers have the same (-) sign. So, we add the numbers and attach the (-) sign to the sum.



Rule 3:

When the two integers have opposite sign [one positive (+) and other negative (-)], find the difference of the numbers and to the difference assign the sign of the integer having greater value.

1. Combination Three:

(negative + positive) or (- plus +)


For example:


Find the sum of the integers.

(i) (-17) + 29

= -17 + 29

[Here, two integers are with unlike signs – and +.We find the difference of the numbers is 12 and to the difference attach the sign of the integer having greater value; so the answer is positive 12].

= 12

(ii) (-81) + (+35)

= -81 + 35

[Here, two integers are with unlike signs – and +.We find the difference of the numbers is 46 and to the difference attach the sign of the integer having greater value; so the answer is negative 46].

= -46



2. Combination Four:

(positive + negative) or (+ plus -)


For example:


Find the sum of the integers.

(i) (+79) + (-57)

= 79 – 57

[Here, two integers are with unlike signs + and -.We find the difference of the numbers is 22 and to the difference attach the sign of the integer having greater value; so the answer is positive 22].

= 22



(ii) (+85) + (-121)

= 85 – 121

[Here, two integers are with unlike signs + and -.We find the difference of the numbers is 36 and to the difference attach the sign of the integer having greater value; so the answer is negative 36].

= -36

In adding integers these are the possible rules to add integers.


● Integers

Representation of Integers on a Number Line.

Addition of Integers on a Number Line.

Rules to Add Integers.

Rules to Subtract Integers.





5th Grade Numbers Page

5th Grade Math Problems

From Rules to Add Integers to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Fraction in Lowest Terms |Reducing Fractions|Fraction in Simplest Form

    Feb 28, 24 04:07 PM

    Fraction 8/16
    There are two methods to reduce a given fraction to its simplest form, viz., H.C.F. Method and Prime Factorization Method. If numerator and denominator of a fraction have no common factor other than 1…

    Read More

  2. Equivalent Fractions | Fractions |Reduced to the Lowest Term |Examples

    Feb 28, 24 01:43 PM

    Equivalent Fractions
    The fractions having the same value are called equivalent fractions. Their numerator and denominator can be different but, they represent the same part of a whole. We can see the shade portion with re…

    Read More

  3. Fraction as a Part of Collection | Pictures of Fraction | Fractional

    Feb 27, 24 02:43 PM

    Pictures of Fraction
    How to find fraction as a part of collection? Let there be 14 rectangles forming a box or rectangle. Thus, it can be said that there is a collection of 14 rectangles, 2 rectangles in each row. If it i…

    Read More

  4. Fraction of a Whole Numbers | Fractional Number |Examples with Picture

    Feb 24, 24 04:11 PM

    A Collection of Apples
    Fraction of a whole numbers are explained here with 4 following examples. There are three shapes: (a) circle-shape (b) rectangle-shape and (c) square-shape. Each one is divided into 4 equal parts. One…

    Read More

  5. Identification of the Parts of a Fraction | Fractional Numbers | Parts

    Feb 24, 24 04:10 PM

    Fractional Parts
    We will discuss here about the identification of the parts of a fraction. We know fraction means part of something. Fraction tells us, into how many parts a whole has been

    Read More