Properties of Factors
The properties of factors are discussed step by step according to its property.
Property (1):
Every whole number is the product of 1 and itself so
(i) Each number is a factor of itself.
19 x 1 = 19,
So, 19 is the factor of 19.
(ii) 1 is the factor of every number.
We know that a number multiplied by 1 is the number itself. So, 1 is a factor of every number.
For example
21 ÷ 1 = 21. So, 1 is the factor of 21,
96 ÷ 1 = 96, So, 1 is a factor of 96.
31 x 1 = 31, So, 1 is the factor of 31.
Property (2):
Every number is a factor of zero (0)
As, 7 x 0 = 0,
17 x 0 = 0,
93 x 0 = 0
So, 7, 17, 93, ……, etc., are the factors of 0.
Property (3):
1 is the smallest factor of every number.
1 is the smallest factor of a multiple and the greatest factor of a multiple is the multiple itself.
A number is a factor of itself. SO, a number itself is its own greatest factor. For example 73 ÷ 1 = 73 so, 73 and 1 are the factors. 73 is the greatest factors.
Property (4):
Every number other than 1 has at least two factors, namely the number itself and 1.
We know that 1 and the number itself are always the factors of every number. This means that every number has at least 2 factors.
Therefore, the properties of factors are explained above so, that student can understand each property.
Properties of Factors
Property 1: A number has a finite number of factors.
Property 2: 1 and the number itself are the factors of every number.
Property 3: 1 is the smallest factor of any number.
Property 4: The number itself is the greatest factor of every number.
Property 5: Factors of a number are always smaller or equal to the number.
Property 6: Every factor of a number is the exact divisor of the number.
To find that whether a number is a factor of another number, we divide the bigger number by the smaller number. If the remainder is zero, we say that the divisor is a factor of the dividend.
For example:
1. Is 5 a factor of 625?
Here, 5 divides 625 exactly. So 5 is a factor of 625.
2. Is 4 a factor of 1121?
Here, 4 does not divide 1121 exactly. So 4 is not a factor of 1121.
You might like these
the greatest number is formed by arranging the given digits in descending order and the smallest number by arranging them in ascending order. The position of the digit at the extreme left of a number increases its place value. So the greatest digit should be placed at the
In formation of numbers with the given digits we may say that a number is an arranged group of digits. Numbers may be formed with or without the repetition of digits.
We know, while arranging numbers from the smallest number to the largest number, then the numbers are arranged in ascending order. Viceversa while arranging numbers from the largest number to the smallest number then the numbers are arranged in descending order.
Rule I: We know that a number with more digits is always greater than the number with less number of digits. Rule II: When the two numbers have the same number of digits, we start comparing the digits from left most place until we come across unequal digits. To learn
In worksheets on comparison of numbers students can practice the questions for fourth grade to compare numbers. This worksheet contains questions on numbers like to find the greatest number, arranging the numbers etc…. Find the greatest number:
Dividing 3Digit by 1Digit Numbers are discussed here stepbystep. How to divide 3digit numbers by singledigit numbers? Let us follow the examples to learn to divide 3digit number by onedigit number. I: Dividing 3digit Number by 1Digit Number without Remainder:
In 4th grade mental math on factors and multiples students can practice different questions on prime numbers, properties of prime numbers, factors, properties of factors, even numbers, odd numbers, prime numbers, composite numbers, tests for divisibility, prime factorization
Practice the questions given in the worksheet on factors and multiples. 1. Find out the even numbers. 27, 36, 48, 125, 360, 453, 518, 423, 54, 58, 917, 186, 423, 928, 358 2. Find out the odd numbers.
We will discuss here about the method of l.c.m. (least common multiple). Let us consider the numbers 8, 12 and 16. Multiples of 8 are → 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, ......
Practice the questions given in the worksheet on hcf (highest common factor) by factorization method, prime factorization method and division method. Find the common factors of the following numbers. (i) 6 and 8 (ii) 9 and 15 (iii) 16 and 18 (iv) 16 and 28
Practice the questions given in the worksheet on methods of prime factorization. 1. Each of the following is the prime factorization of a certain number. Find the number. (i) 2 × 5 × 7
We will discuss here about the method of h.c.f. (highest common factor). The highest common factor or HCF of two or more numbers is the greatest number which divides exactly the given numbers. Let us consider two numbers 16 and 24.
Factors of a number are discussed here so that students can understand the factors of the product. What are factors? (i) If a dividend, when divided by a divisor, is divided completely
In prime factorization, we factorise the numbers into prime numbers, called prime factors. There are two methods of prime factorization: 1. Division Method 2. Factor Tree Method
All the even and odd numbers between 1 and 100 are discussed here. What are the even numbers from 1 to 100? The even numbers from 1 to 100 are:
Related Concept
● Factors
and Multiples by using Multiplication Facts
● Factors
and Multiples by using Division Facts
● Multiples
● Properties of
Multiples
● Examples on
Multiples
● Factors
● Factor Tree Method
● Properties of
Factors
● Examples on
Factors
● Even and Odd
Numbers
● Even
and Odd Numbers Between 1 and 100
● Examples
on Even and Odd Numbers
4th Grade Math Activities
From Properties of Factors to HOME PAGE
Didn't find what you were looking for? Or want to know more information
about Math Only Math.
Use this Google Search to find what you need.
Share this page:
What’s this?


New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.