Problems on Hyperbola

We will learn how to solve different types of problems on hyperbola.

1. Find the position of the point (6, - 5) relative to the hyperbola \(\frac{x^{2}}{9}\) - \(\frac{y^{2}}{25}\) = 1.                        

Solution:      

The given equation is of the hyperbola is \(\frac{x^{2}}{9}\) - \(\frac{y^{2}}{25}\) = 1

We know that the point P (x\(_{1}\), y\(_{1}\)) lies outside, on or inside the hyperbola \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1 according as \(\frac{x_{1}^{2}}{a^{2}}\) - \(\frac{y_{1}^{2}}{b^{2}}\) - 1 < 0, = or > 0.

According to the given problem,

\(\frac{x_{1}^{2}}{a^{2}}\) - \(\frac{y_{1}^{2}}{b^{2}}\) – 1

= \(\frac{6^{2}}{9}\) - \(\frac{(-5)^{2}}{25}\) - 1

= \(\frac{26}{9}\) - \(\frac{25}{25}\) - 1

= 4 - 1 - 1

= 2 > 0. 

Therefore, the point (6, - 5) lies inside the hyperbola \(\frac{x^{2}}{9}\) - \(\frac{y^{2}}{25}\) = 1


2. The co-ordinates of the vertices of a hyperbola are (9, 2) and (1, 2) and the distance between its two foci is 10. Find its equation and also the length of its latus rectum.

Solution:       

According to the problem the ordinates of the vertices of the required hyperbola are equal. Therefore, the transverse axis of the hyperbola is parallel to axis and conjugate axis is parallel to y-axis.

The mid-point of the vertices (\(\frac{9 + 1}{2}\), \(\frac{2 + 2}{2}\)) = (5, 2)

The mid-point of the vertices is the centre of the required hyperbola.  

Therefore, the centre of the required hyperbola is (5, 2)

Let the equation of the required hyperbola be \(\frac{(x - α)^{2}}{a^{2}}\) - \(\frac{(y - β)^{2}}{b^{2}}\) = 1

Now, the length its transverse axis = the distance between the two vertices i.e., the distance between the points (9, 2) and (1, 2) = 8

i.e., 2a = 8

⇒ a = 4.

Again, the distance between the two foci = 2ae = 10

⇒ ae = 5.

Now, b\(^{2}\) = a\(^{2}\)(e\(^{2}\) - 1)

= a\(^{2}\)e\(^{2}\) - a\(^{2}\)

= 5\(^{2}\) - 4\(^{2}\)

= 25 - 16

= 9

Now form the equation \(\frac{(x - α)^{2}}{a^{2}}\) - \(\frac{(y - β)^{2}}{b^{2}}\) = 1, we get,

⇒ \(\frac{(x - 5)^{2}}{16}\) - \(\frac{(y - β)^{2}}{9}\) = 1

⇒ 9x\(^{2}\) - 16y\(^{2}\) - 90x + 64y + 17 = 0.

Therefore, the equation of the required hyperbola is

The length of the latus rectum of the hyperbola = 2 ∙ \(\frac{b^{2}}{a}\) = 2 ∙ \(\frac{9}{4}\) = \(\frac{9}{2}\) units.


More problems on hyperbola:

3. Find the equation of the hyperbola whose co-ordinates of the foci of a hyperbola are (± 6, 0) and its latus rectum is of 10 units.  

Solution:         

Let the equation of the required hyperbola be,

\(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1

The co-ordinates of the foci of the hyperbola \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1 are (± ae, 0) and the lenght of its latus rectum is 2 ∙ \(\frac{b^{2}}{a}\).

According to the problem,

ae = 6 ……………….. (i) and

2 ∙ \(\frac{b^{2}}{a}\) = 10 ……………….. (ii)

Now form the above equation (ii) we get,

2b\(^{2}\) = 10a

⇒ a\(^{2}\)(e\(^{2}\) - 1) = 5a , [Since, we know that, b\(^{2}\) = a\(^{2}\)(e\(^{2}\) - 1)]

⇒ a\(^{2}\)e\(^{2}\) - a\(^{2}\) - 5a = 0                                                

⇒ 6\(^{2}\) - a\(^{2}\)- 5a = 0 (Since, we know that, ae = 6)

⇒ a\(^{2}\) + 5a - 36 =  0                                                     

⇒ a\(^{2}\) + 9a - 4a - 36  =  0

⇒ a(a + 9) - 4(a + 9) = 0                                         

⇒ (a + 9)(a - 4) = 0

⇒ (a + 9) = 0 or (a - 4) = 0

⇒ a = - 9 or, a =  4

⇒ a = -9 is not possible.

Therefore, a = 4

Therefore, b\(^{2}\) = a\(^{2}\)(e\(^{2}\) - 1)

= (ae)\(^{2}\) - a\(^{2}\)

= 6\(^{2}\) - 4\(^{2}\)

= 36 - 16

= 20

Therefore, the required equation of the hyperbola is

\(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1               

⇒ \(\frac{x^{2}}{16}\) - \(\frac{y^{2}}{20}\) = 1         

⇒ (5x)\(^{2}\) - 4y\(^{2}\) = 80.

The Hyperbola





11 and 12 Grade Math

From Problems on Hyperbola to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Perpendicular Lines | What are Perpendicular Lines in Geometry?|Symbol

    Apr 19, 24 02:46 AM

    Perpendicular Lines
    In perpendicular lines when two intersecting lines a and b are said to be perpendicular to each other if one of the angles formed by them is a right angle. In other words, Set Square Set Square If two…

    Read More

  2. Fundamental Geometrical Concepts | Point | Line | Properties of Lines

    Apr 19, 24 01:55 AM

    Point P
    The fundamental geometrical concepts depend on three basic concepts — point, line and plane. The terms cannot be precisely defined. However, the meanings of these terms are explained through examples.

    Read More

  3. What is a Polygon? | Simple Closed Curve | Triangle | Quadrilateral

    Apr 18, 24 02:15 AM

    What is a polygon? A simple closed curve made of three or more line-segments is called a polygon. A polygon has at least three line-segments.

    Read More

  4. Simple Closed Curves | Types of Closed Curves | Collection of Curves

    Apr 18, 24 01:36 AM

    Closed Curves Examples
    In simple closed curves the shapes are closed by line-segments or by a curved line. Triangle, quadrilateral, circle, etc., are examples of closed curves.

    Read More

  5. Tangrams Math | Traditional Chinese Geometrical Puzzle | Triangles

    Apr 18, 24 12:31 AM

    Tangrams
    Tangram is a traditional Chinese geometrical puzzle with 7 pieces (1 parallelogram, 1 square and 5 triangles) that can be arranged to match any particular design. In the given figure, it consists of o…

    Read More