Problems on Hyperbola

We will learn how to solve different types of problems on hyperbola.

1. Find the position of the point (6, - 5) relative to the hyperbola \(\frac{x^{2}}{9}\) - \(\frac{y^{2}}{25}\) = 1.                        

Solution:      

The given equation is of the hyperbola is \(\frac{x^{2}}{9}\) - \(\frac{y^{2}}{25}\) = 1

We know that the point P (x\(_{1}\), y\(_{1}\)) lies outside, on or inside the hyperbola \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1 according as \(\frac{x_{1}^{2}}{a^{2}}\) - \(\frac{y_{1}^{2}}{b^{2}}\) - 1 < 0, = or > 0.

According to the given problem,

\(\frac{x_{1}^{2}}{a^{2}}\) - \(\frac{y_{1}^{2}}{b^{2}}\) – 1

= \(\frac{6^{2}}{9}\) - \(\frac{(-5)^{2}}{25}\) - 1

= \(\frac{26}{9}\) - \(\frac{25}{25}\) - 1

= 4 - 1 - 1

= 2 > 0. 

Therefore, the point (6, - 5) lies inside the hyperbola \(\frac{x^{2}}{9}\) - \(\frac{y^{2}}{25}\) = 1


2. The co-ordinates of the vertices of a hyperbola are (9, 2) and (1, 2) and the distance between its two foci is 10. Find its equation and also the length of its latus rectum.

Solution:       

According to the problem the ordinates of the vertices of the required hyperbola are equal. Therefore, the transverse axis of the hyperbola is parallel to axis and conjugate axis is parallel to y-axis.

The mid-point of the vertices (\(\frac{9 + 1}{2}\), \(\frac{2 + 2}{2}\)) = (5, 2)

The mid-point of the vertices is the centre of the required hyperbola.  

Therefore, the centre of the required hyperbola is (5, 2)

Let the equation of the required hyperbola be \(\frac{(x - α)^{2}}{a^{2}}\) - \(\frac{(y - β)^{2}}{b^{2}}\) = 1

Now, the length its transverse axis = the distance between the two vertices i.e., the distance between the points (9, 2) and (1, 2) = 8

i.e., 2a = 8

⇒ a = 4.

Again, the distance between the two foci = 2ae = 10

⇒ ae = 5.

Now, b\(^{2}\) = a\(^{2}\)(e\(^{2}\) - 1)

= a\(^{2}\)e\(^{2}\) - a\(^{2}\)

= 5\(^{2}\) - 4\(^{2}\)

= 25 - 16

= 9

Now form the equation \(\frac{(x - α)^{2}}{a^{2}}\) - \(\frac{(y - β)^{2}}{b^{2}}\) = 1, we get,

⇒ \(\frac{(x - 5)^{2}}{16}\) - \(\frac{(y - β)^{2}}{9}\) = 1

⇒ 9x\(^{2}\) - 16y\(^{2}\) - 90x + 64y + 17 = 0.

Therefore, the equation of the required hyperbola is

The length of the latus rectum of the hyperbola = 2 ∙ \(\frac{b^{2}}{a}\) = 2 ∙ \(\frac{9}{4}\) = \(\frac{9}{2}\) units.


More problems on hyperbola:

3. Find the equation of the hyperbola whose co-ordinates of the foci of a hyperbola are (± 6, 0) and its latus rectum is of 10 units.  

Solution:         

Let the equation of the required hyperbola be,

\(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1

The co-ordinates of the foci of the hyperbola \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1 are (± ae, 0) and the lenght of its latus rectum is 2 ∙ \(\frac{b^{2}}{a}\).

According to the problem,

ae = 6 ……………….. (i) and

2 ∙ \(\frac{b^{2}}{a}\) = 10 ……………….. (ii)

Now form the above equation (ii) we get,

2b\(^{2}\) = 10a

⇒ a\(^{2}\)(e\(^{2}\) - 1) = 5a , [Since, we know that, b\(^{2}\) = a\(^{2}\)(e\(^{2}\) - 1)]

⇒ a\(^{2}\)e\(^{2}\) - a\(^{2}\) - 5a = 0                                                

⇒ 6\(^{2}\) - a\(^{2}\)- 5a = 0 (Since, we know that, ae = 6)

⇒ a\(^{2}\) + 5a - 36 =  0                                                     

⇒ a\(^{2}\) + 9a - 4a - 36  =  0

⇒ a(a + 9) - 4(a + 9) = 0                                         

⇒ (a + 9)(a - 4) = 0

⇒ (a + 9) = 0 or (a - 4) = 0

⇒ a = - 9 or, a =  4

⇒ a = -9 is not possible.

Therefore, a = 4

Therefore, b\(^{2}\) = a\(^{2}\)(e\(^{2}\) - 1)

= (ae)\(^{2}\) - a\(^{2}\)

= 6\(^{2}\) - 4\(^{2}\)

= 36 - 16

= 20

Therefore, the required equation of the hyperbola is

\(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1               

⇒ \(\frac{x^{2}}{16}\) - \(\frac{y^{2}}{20}\) = 1         

⇒ (5x)\(^{2}\) - 4y\(^{2}\) = 80.

The Hyperbola





11 and 12 Grade Math

From Problems on Hyperbola to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Worksheet on Triangle | Homework on Triangle | Different types|Answers

    Jun 21, 24 02:19 AM

    Find the Number of Triangles
    In the worksheet on triangle we will solve 12 different types of questions. 1. Take three non - collinear points L, M, N. Join LM, MN and NL. What figure do you get? Name: (a)The side opposite to ∠L…

    Read More

  2. Worksheet on Circle |Homework on Circle |Questions on Circle |Problems

    Jun 21, 24 01:59 AM

    Circle
    In worksheet on circle we will solve 10 different types of question in circle. 1. The following figure shows a circle with centre O and some line segments drawn in it. Classify the line segments as ra…

    Read More

  3. Circle Math | Parts of a Circle | Terms Related to the Circle | Symbol

    Jun 21, 24 01:30 AM

    Circle using a Compass
    In circle math the terms related to the circle are discussed here. A circle is such a closed curve whose every point is equidistant from a fixed point called its centre. The symbol of circle is O. We…

    Read More

  4. Circle | Interior and Exterior of a Circle | Radius|Problems on Circle

    Jun 21, 24 01:00 AM

    Semi-circular Region
    A circle is the set of all those point in a plane whose distance from a fixed point remains constant. The fixed point is called the centre of the circle and the constant distance is known

    Read More

  5. Quadrilateral Worksheet |Different Types of Questions in Quadrilateral

    Jun 19, 24 09:49 AM

    In math practice test on quadrilateral worksheet we will practice different types of questions in quadrilateral. Students can practice the questions of quadrilateral worksheet before the examinations

    Read More