Problems on Hyperbola

We will learn how to solve different types of problems on hyperbola.

1. Find the position of the point (6, - 5) relative to the hyperbola \(\frac{x^{2}}{9}\) - \(\frac{y^{2}}{25}\) = 1.                        

Solution:      

The given equation is of the hyperbola is \(\frac{x^{2}}{9}\) - \(\frac{y^{2}}{25}\) = 1

We know that the point P (x\(_{1}\), y\(_{1}\)) lies outside, on or inside the hyperbola \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1 according as \(\frac{x_{1}^{2}}{a^{2}}\) - \(\frac{y_{1}^{2}}{b^{2}}\) - 1 < 0, = or > 0.

According to the given problem,

\(\frac{x_{1}^{2}}{a^{2}}\) - \(\frac{y_{1}^{2}}{b^{2}}\) – 1

= \(\frac{6^{2}}{9}\) - \(\frac{(-5)^{2}}{25}\) - 1

= \(\frac{26}{9}\) - \(\frac{25}{25}\) - 1

= 4 - 1 - 1

= 2 > 0. 

Therefore, the point (6, - 5) lies inside the hyperbola \(\frac{x^{2}}{9}\) - \(\frac{y^{2}}{25}\) = 1


2. The co-ordinates of the vertices of a hyperbola are (9, 2) and (1, 2) and the distance between its two foci is 10. Find its equation and also the length of its latus rectum.

Solution:       

According to the problem the ordinates of the vertices of the required hyperbola are equal. Therefore, the transverse axis of the hyperbola is parallel to axis and conjugate axis is parallel to y-axis.

The mid-point of the vertices (\(\frac{9 + 1}{2}\), \(\frac{2 + 2}{2}\)) = (5, 2)

The mid-point of the vertices is the centre of the required hyperbola.  

Therefore, the centre of the required hyperbola is (5, 2)

Let the equation of the required hyperbola be \(\frac{(x - α)^{2}}{a^{2}}\) - \(\frac{(y - β)^{2}}{b^{2}}\) = 1

Now, the length its transverse axis = the distance between the two vertices i.e., the distance between the points (9, 2) and (1, 2) = 8

i.e., 2a = 8

⇒ a = 4.

Again, the distance between the two foci = 2ae = 10

⇒ ae = 5.

Now, b\(^{2}\) = a\(^{2}\)(e\(^{2}\) - 1)

= a\(^{2}\)e\(^{2}\) - a\(^{2}\)

= 5\(^{2}\) - 4\(^{2}\)

= 25 - 16

= 9

Now form the equation \(\frac{(x - α)^{2}}{a^{2}}\) - \(\frac{(y - β)^{2}}{b^{2}}\) = 1, we get,

⇒ \(\frac{(x - 5)^{2}}{16}\) - \(\frac{(y - β)^{2}}{9}\) = 1

⇒ 9x\(^{2}\) - 16y\(^{2}\) - 90x + 64y + 17 = 0.

Therefore, the equation of the required hyperbola is

The length of the latus rectum of the hyperbola = 2 ∙ \(\frac{b^{2}}{a}\) = 2 ∙ \(\frac{9}{4}\) = \(\frac{9}{2}\) units.


More problems on hyperbola:

3. Find the equation of the hyperbola whose co-ordinates of the foci of a hyperbola are (± 6, 0) and its latus rectum is of 10 units.  

Solution:         

Let the equation of the required hyperbola be,

\(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1

The co-ordinates of the foci of the hyperbola \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1 are (± ae, 0) and the lenght of its latus rectum is 2 ∙ \(\frac{b^{2}}{a}\).

According to the problem,

ae = 6 ……………….. (i) and

2 ∙ \(\frac{b^{2}}{a}\) = 10 ……………….. (ii)

Now form the above equation (ii) we get,

2b\(^{2}\) = 10a

⇒ a\(^{2}\)(e\(^{2}\) - 1) = 5a , [Since, we know that, b\(^{2}\) = a\(^{2}\)(e\(^{2}\) - 1)]

⇒ a\(^{2}\)e\(^{2}\) - a\(^{2}\) - 5a = 0                                                

⇒ 6\(^{2}\) - a\(^{2}\)- 5a = 0 (Since, we know that, ae = 6)

⇒ a\(^{2}\) + 5a - 36 =  0                                                     

⇒ a\(^{2}\) + 9a - 4a - 36  =  0

⇒ a(a + 9) - 4(a + 9) = 0                                         

⇒ (a + 9)(a - 4) = 0

⇒ (a + 9) = 0 or (a - 4) = 0

⇒ a = - 9 or, a =  4

⇒ a = -9 is not possible.

Therefore, a = 4

Therefore, b\(^{2}\) = a\(^{2}\)(e\(^{2}\) - 1)

= (ae)\(^{2}\) - a\(^{2}\)

= 6\(^{2}\) - 4\(^{2}\)

= 36 - 16

= 20

Therefore, the required equation of the hyperbola is

\(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1               

⇒ \(\frac{x^{2}}{16}\) - \(\frac{y^{2}}{20}\) = 1         

⇒ (5x)\(^{2}\) - 4y\(^{2}\) = 80.

The Hyperbola





11 and 12 Grade Math

From Problems on Hyperbola to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Arranging Numbers | Ascending Order | Descending Order |Compare Digits

    Sep 15, 24 04:57 PM

    Arranging Numbers
    We know, while arranging numbers from the smallest number to the largest number, then the numbers are arranged in ascending order. Vice-versa while arranging numbers from the largest number to the sma…

    Read More

  2. Counting Before, After and Between Numbers up to 10 | Number Counting

    Sep 15, 24 04:08 PM

    Before After Between
    Counting before, after and between numbers up to 10 improves the child’s counting skills.

    Read More

  3. Comparison of Three-digit Numbers | Arrange 3-digit Numbers |Questions

    Sep 15, 24 03:16 PM

    What are the rules for the comparison of three-digit numbers? (i) The numbers having less than three digits are always smaller than the numbers having three digits as:

    Read More

  4. 2nd Grade Place Value | Definition | Explanation | Examples |Worksheet

    Sep 14, 24 04:31 PM

    2nd Grade Place Value
    The value of a digit in a given number depends on its place or position in the number. This value is called its place value.

    Read More

  5. Three Digit Numbers | What is Spike Abacus? | Abacus for Kids|3 Digits

    Sep 14, 24 03:39 PM

    2 digit numbers table
    Three digit numbers are from 100 to 999. We know that there are nine one-digit numbers, i.e., 1, 2, 3, 4, 5, 6, 7, 8 and 9. There are 90 two digit numbers i.e., from 10 to 99. One digit numbers are ma

    Read More