Definition of Hyperbola

We will discuss the definition of hyperbola and how to find the equation of the hyperbola whose focus, directrix and eccentricity are given.

If a point (P) moves in the plane in such a way that the ratio of its distance from a fixed point (S is known as focus) in the same plane to its perpendicular distance from the fixed line (L is known as dirctrix) is always constant which is always greater than unity, then the locus traced out by P is called a Hyperbola.

Let S and L be a fixed point and a fixed straight line on a plane respectively. If the point P moves on this plane in such a way that its distance from the fixed point S always constant ratio to its perpendicular distance from the fixed line L and its ratio is greater than unity then the locus of the point P is called a Hyperbola.

Definition of Hyperbola

The fixed point S is called a focus and the fixed straight line L, the corresponding directrix and the constant ratio is called the eccentricity of the hyperbola. The eccentricity is generally denoted by e (> 1).

If S is the focus, Z is the directrix and P is any point on the hyperbola, then by definition

\(\frac{SP}{PM}\) = e

⇒ SP = e PM

Solved example to find the equation of the hyperbola whose focus, directrix and eccentricity are given:

The equation of the directrix of a hyperbola is x + y = -1. Its focus is at (1, 2) and the eccentricity is \(\frac{3}{2}\). Find the equation of the hyperbola.


Let P(x, y) be any point on the required hyperbola. If PM is the length of the perpendicular from P upon the directrix  x + y = -1 or, x + y + 1 = 0 then

PM = \(\frac{x + y + 1}{\sqrt{1^{2} + (-1)^{2}}}\) =  \(\frac{x + y + 1}{√2}\)        

Again, the distance of P from the focus S (- 1, 1) is

SP = \(\sqrt{(x - 1)^2 + (y - 1)^2}\)

Since the point Plies on the required hyperbola, hence by definition we have,

\(\frac{SP}{PM}\) = e

SP = e PM

⇒ SP\(^{2}\) = e\(^{2}\)(PM)\(^{2}\)

⇒ (x - 1)\(^{2}\) + (y - 2)\(^{2}\) = \(\frac{9}{4}\) \(\frac{(x + y + 1)^{2}}{2}\), [Since, e = 3]

⇒ 8x\(^{2}\) + 8y\(^{2}\) - 16x - 32y + 40 = 9x\(^{2}\) + 9y\(^{2}\) + 9 + 18xy + 18x + 18y

⇒ x\(^{2}\) + y\(^{2}\) + 18xy + 34x + 50y - 31 = 0, which is the required equation of the hyperbola.

The Hyperbola

11 and 12 Grade Math 

From Definition of Hyperbola to HOME PAGE

New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

Share this page: What’s this?

Recent Articles

  1. Rupees and Paise | Paise Coins | Rupee Coins | Rupee Notes

    Dec 04, 23 02:14 PM

    Different types of Indian Coins
    Money consists of rupees and paise; we require money to purchase things. 100 paise make one rupee. List of paise and rupees in the shape of coins and notes:

    Read More

  2. Months of the Year | List of 12 Months of the Year |Jan, Feb, Mar, Apr

    Dec 04, 23 01:50 PM

    Months of the Year
    There are 12 months in a year. The months are January, February, march, April, May, June, July, August, September, October, November and December. The year begins with the January month. December is t…

    Read More

  3. The Story about Seasons | Spring | Summer | Autumn | Winter

    Dec 04, 23 01:49 PM

    The Four Seasons
    Kids let’s enjoy the story about seasons. Here we will discuss about the four seasons and the duration. Some months are too hot and some are too cold. The period of hot months is called the hot

    Read More