Two Foci and Two Directrices of the Hyperbola

We will learn how to find the two foci and two directrices of the hyperbola.

Let P (x, y) be a point on the hyperbola.

\(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1

⇒ b\(^{2}\)x\(^{2}\) - a\(^{2}\)y\(^{2}\) = a\(^{2}\)b\(^{2}\)

Now form the above diagram we get,

CA = CA' = a and e is the eccentricity of the hyperbola and the point S and the line ZK are the focus and directrix respectively.

Two Foci and Two Directrices of the Hyperbola

Now let S' and K' be two points on the x-axis on the side of C which is opposite to the side of S such that CS' = ae and CK' = \(\frac{a}{e}\).

Further let Z'K' perpendicular CK' and PM' perpendicular Z'K' as shown in the given figure. Now join P and S'. Therefore, we clearly see that PM’ = NK'.

Now from the equation b\(^{2}\)x\(^{2}\) - a\(^{2}\)y\(^{2}\) = a\(^{2}\)b\(^{2}\), we get,

a\(^{2}\)(e\(^{2} - 1\)) x\(^{2}\) - a\(^{2}\)y\(^{2}\) = a\(^{2}\) ∙  a\(^{2}\)(e\(^{2} - 1\)), [Since, b\(^{2}\) = a\(^{2}\)(e\(^{2} - 1\))]

x\(^{2}\)(e\(^{2} - 1\)) - y\(^{2}\) = a\(^{2}\)(e\(^{2} - 1\)) = a\(^{2}\)e\(^{2}\) - a\(^{2}\)

x\(^{2}\)e\(^{2}\) - x\(^{2}\) - y\(^{2}\) = a\(^{2}\)e\(^{2}\) - a\(^{2}\)

x\(^{2}\)e\(^{2}\) + a\(^{2}\) + 2 xe a = x\(^{2}\) + a\(^{2}\)e\(^{2}\) + 2 x ae x  + y\(^{2}\)

(ex + a)\(^{2}\) = (x + ae)\(^{2}\) + y\(^{2}\)


(x + ae)\(^{2}\) + y\(^{2}\) = (ex + a)\(^{2}\)

⇒  (x + ae)\(^{2}\) - (y - 0)\(^{2}\) = e\(^{2}\)(x + \(\frac{a}{e}\))\(^{2}\)

S'P\(^{2}\) = e\(^{2}\) PM'\(^{2}\)

S'P = e PM'

Distance of P from S' = e (distance of P from Z'K')

Hence, we would have obtained the same curve had we started with S' as focus and Z'K' as directrix. This shows that the hyperbola has a second focus S' (-ae, 0) and a second directrix x = -\(\frac{a}{e}\).

In other words, from the above relation we see that the distance of the moving point P (x, y) from the point S' (- ae, 0) bears a constant ratio e (> 1) to its distance from the line x + \(\frac{a}{e}\) = 0.

Therefore, we shall have the same hyperbola if the point S' (- ae, 0) is taken as the fixed point i.e, focus and x + \(\frac{a}{e}\) = 0 is taken as the fixed line i.e., directrix.

Hence, a hyperbola has two foci and two directrices.

The Hyperbola






11 and 12 Grade Math 

From Two Foci and Two Directrices of the Hyperbola to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Mixed Addition and Subtraction | Questions on Addition

    Jan 12, 25 02:14 PM

    In worksheet on mixed addition and subtraction the questions involve both addition and subtraction together; all grade students can practice the questions on addition and subtraction together.

    Read More

  2. Estimating Sums and Differences | Estimations | Practical Calculations

    Jan 12, 25 02:02 PM

    Estimating Difference
    For estimating sums and differences in the number we use the rounded numbers for estimations to its nearest tens, hundred, and thousand. In many practical calculations, only an approximation is requir…

    Read More

  3. Combination of Addition and Subtraction | Mixed Addition & Subtraction

    Jan 12, 25 01:36 PM

    Add and Sub
    We will discuss here about the combination of addition and subtraction. The rules which can be used to solve the sums involving addition (+) and subtraction (-) together are: I: First add

    Read More

  4. Checking Subtraction using Addition |Use Addition to Check Subtraction

    Jan 12, 25 01:13 PM

    Checking Subtraction using Addition Worksheet
    We can check subtraction by adding the difference to the smaller number. Since the sum of difference and smaller number is equal to the larger number, subtraction is correct.

    Read More

  5. Worksheet on Subtraction of 4-Digit Numbers|Subtracting 4-Digit Number

    Jan 12, 25 09:04 AM

    Worksheet on Subtraction of 4-Digit Numbers
    Practice the questions given in the worksheet on subtraction of 4-digit numbers. Here we will subtract two 4-digit numbers (without borrowing and with borrowing) to find the difference between them.

    Read More