Vertex of the Hyperbola

We will discuss about the vertex of the hyperbola along with the examples.

Definition of the vertex of the hyperbola:

The vertex is the point of intersection of the line perpendicular to the directrix which passes through the focus cuts the hyperbola.

Suppose the equation of the hyperbola be \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1 then, from the above figure we observe that the line perpendicular to the directrix KZ and passing through the focus S cuts the hyperbola at A and A'.

Vertex of the Hyperbola

The points A and A', where the hyperbola meets the line joining the foci S and S' are called the vertices of the hyperbola.

Therefore, the hyperbola has two vertices A and A' whose co-ordinates are (a, 0) and (- a, 0) respectively.

Solved examples to find the vertex of a hyperbola:

1. Find the coordinates of the vertices of the hyperbola 9x\(^{2}\) - 16y\(^{2}\) - 144 = 0.

Solution:

The given equation of the hyperbola is 9x\(^{2}\) - 16y\(^{2}\) - 144 = 0

Now form the above equation we get,

9x\(^{2}\) - 16y\(^{2}\) = 144

Dividing both sides by 144, we get

\(\frac{x^{2}}{16}\) - \(\frac{y^{2}}{9}\) = 1

This is the form of \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1, (a\(^{2}\) > b\(^{2}\)), where a\(^{2}\) = 16 or a = 4 and b\(^{2}\) = 9 or b = 3

We know the coordinates of the vertices are (a, 0) and (-a, 0).

Therefore, the coordinates of the vertices of the hyperbola 9x\(^{2}\) - 16y\(^{2}\) - 144 = 0 are (4, 0) and (-4, 0).

 

2. Find the coordinates of the vertices of the hyperbola 9x\(^{2}\) - 25y\(^{2}\) - 225 = 0.

Solution:

The given equation of the hyperbola is 9x\(^{2}\) - 25y\(^{2}\) - 225 = 0

Now form the above equation we get,

9x\(^{2}\) - 25y\(^{2}\) = 225

Dividing both sides by 225, we get

\(\frac{x^{2}}{25}\) - \(\frac{y^{2}}{9}\) = 1

Comparing the equation \(\frac{x^{2}}{25}\) - \(\frac{y^{2}}{9}\) = 1 with the standard equation of hyperbola \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1 (a\(^{2}\) > b\(^{2}\)) we get,

a\(^{2}\) = 25 or a = 5 and b\(^{2}\) = 9 or b = 3

We know the coordinates of the vertices are (a, 0) and (-a, 0).

Therefore, the coordinates of the vertices of the hyperbola 9x\(^{2}\) - 25y\(^{2}\) - 225 = 0 are (5, 0) and (-5, 0).

The Hyperbola





11 and 12 Grade Math 

From Vertex of the Hyperbola to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Adding 1-Digit Number | Understand the Concept one Digit Number

    Sep 17, 24 02:25 AM

    Add by Counting Forward
    Understand the concept of adding 1-digit number with the help of objects as well as numbers.

    Read More

  2. Counting Before, After and Between Numbers up to 10 | Number Counting

    Sep 17, 24 01:47 AM

    Before After Between
    Counting before, after and between numbers up to 10 improves the child’s counting skills.

    Read More

  3. Worksheet on Three-digit Numbers | Write the Missing Numbers | Pattern

    Sep 17, 24 12:10 AM

    Reading 3-digit Numbers
    Practice the questions given in worksheet on three-digit numbers. The questions are based on writing the missing number in the correct order, patterns, 3-digit number in words, number names in figures…

    Read More

  4. Arranging Numbers | Ascending Order | Descending Order |Compare Digits

    Sep 16, 24 11:24 PM

    Arranging Numbers
    We know, while arranging numbers from the smallest number to the largest number, then the numbers are arranged in ascending order. Vice-versa while arranging numbers from the largest number to the sma…

    Read More

  5. Worksheet on Tens and Ones | Math Place Value |Tens and Ones Questions

    Sep 16, 24 02:40 PM

    Tens and Ones
    In math place value the worksheet on tens and ones questions are given below so that students can do enough practice which will help the kids to learn further numbers.

    Read More