Latus Rectum of the Hyperbola

We will discuss about the latus rectum of the hyperbola along with the examples.


Definition of the Latus Rectum of  the Hyperbola:

The chord of the hyperbola through its one focus and perpendicular to the transverse axis (or parallel to the directrix) is called the latus rectum of the hyperbola.

Latus Rectum of  the Hyperbola

It is a double ordinate passing through the focus. Suppose the equation of the hyperbola be \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1 then, from the above figure we observe that L\(_{1}\)SL\(_{2}\) is the latus rectum and L\(_{1}\)S is called the semi-latus rectum. Again we see that M\(_{1}\)SM\(_{2}\) is also another latus rectum.

According to the diagram, the co-ordinates of the end L\(_{1}\) of the latus rectum L\(_{1}\)SL\(_{2}\) are (ae, SL\(_{1}\)). As L\(_{1}\) lies on the hyperbola \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1, therefore, we get,

\(\frac{(ae)^{2}}{a^{2}}\) - \(\frac{(SL_{1})^{2}}{b^{2}}\) = 1

\(\frac{a^{2}e^{2}}{a^{2}}\) - \(\frac{(SL_{1})^{2}}{b^{2}}\) = 1     

e\(^{2}\) - \(\frac{(SL_{1})^{2}}{b^{2}}\) = 1

⇒ \(\frac{(SL_{1})^{2}}{b^{2}}\) = e\(^{2}\) - 1

⇒ SL\(_{1}\)\(^{2}\) = b\(^{2}\) . \(\frac{b^{2}}{a^{2}}\), [Since, we know that, b\(^{2}\) = a\(^{2}\)(e\(^{2} - 1\))]

⇒ SL\(_{1}\)\(^{2}\) = \(\frac{b^{4}}{a^{2}}\)       

Hence, SL\(_{1}\) = ± \(\frac{b^{2}}{a}\).

Therefore, the co-ordinates of the ends L\(_{1}\) and L\(_{2}\) are (ae, \(\frac{b^{2}}{a}\)) and (ae, - \(\frac{b^{2}}{a}\)) respectively and the length of latus rectum = L\(_{1}\)SL\(_{2}\) = 2 . SL\(_{1}\) = 2 . \(\frac{b^{2}}{a}\) = 2a(e\(^{2} - 1\))

Notes:

(i) The equations of the latera recta of the hyperbola \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1 are x = ± ae.

(ii) A hyperbola has two latus rectum.


Solved examples to find the length of the latus rectum of a hyperbola:

Find the length of the latus rectum and equation of the latus rectum of the hyperbola x\(^{2}\) - 4y\(^{2}\) + 2x - 16y - 19 = 0.

Solution:

The given equation of the hyperbola x\(^{2}\) - 4y\(^{2}\) + 2x - 16y - 19 = 0

Now form the above equation we get,

(x\(^{2}\) + 2x + 1) - 4(y\(^{2}\) + 4y + 4) = 4

(x + 1)\(^{2}\) - 4(y + 2)\(^{2}\) = 4.

Now dividing both sides by 4

⇒ \(\frac{(x + 1)^{2}}{4}\) - (y + 2)\(^{2}\) = 1.

\(\frac{(x + 1)^{2}}{2^2} - \frac{(y + 2)^{2}}{1^{2}}\) ………………. (i)

Shifting the origin at (-1, -2) without rotating the coordinate axes and denoting the new coordinates with respect to the new axes by X and Y, we have

x = X - 1 and y = Y - 2 ………………. (ii)

Using these relations, equation (i) reduces to \(\frac{X^{2}}{2^{2}}\) - \(\frac{Y^{2}}{1^{2}}\) = 1 ………………. (iii)

This is of the form \(\frac{X^{2}}{a^{2}}\) - \(\frac{Y^{2}}{b^{2}}\) = 1, where a = 2 and b = 1.

Thus, the given equation represents a hyperbola.

Clearly, a > b. So, the given equation represents a hyperbola whose tranverse and conjugate axes are along X and Y axes respectively.

Now fine the eccentricity of the hyperbola:

We know that e = \(\sqrt{1 + \frac{b^{2}}{a^{2}}}\) = \(\sqrt{1 + \frac{1^{2}}{2^{2}}}\) = \(\sqrt{1 + \frac{1}{4}}\) = \(\frac{√5}{2}\).

Therefore, the length of the latus rectum = \(\frac{2b^{2}}{a}\) = \(\frac{2 ∙ (1)^{2}}{2}\) = \(\frac{2}{2}\) = 1.

The equations of the latus recta with respect to the new axes are X = ±ae

X = ± 2 \(\frac{√5}{2}\)

X = ± √5

Hence, the equations of the latus recta with respect to the old axes are

x = ±√5 – 1, [Putting X = ± √5 in (ii)]

i.e., x = √5 - 1 and x = -√5 – 1.

The Hyperbola






11 and 12 Grade Math 

From Latus Rectum of the Hyperbola to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Worksheets on Comparison of Numbers | Find the Greatest Number

    Oct 13, 24 01:03 PM

    Comparison of Two Numbers
    In worksheets on comparison of numbers students can practice the questions for fourth grade to compare numbers. This worksheet contains questions on numbers like to find the greatest number, arranging…

    Read More

  2. Counting Before, After and Between Numbers up to 10 | Number Counting

    Oct 10, 24 10:06 AM

    Before After Between
    Counting before, after and between numbers up to 10 improves the child’s counting skills.

    Read More

  3. Expanded Form of a Number | Writing Numbers in Expanded Form | Values

    Oct 10, 24 03:19 AM

    Expanded Form of a Number
    We know that the number written as sum of the place-values of its digits is called the expanded form of a number. In expanded form of a number, the number is shown according to the place values of its…

    Read More

  4. Place Value | Place, Place Value and Face Value | Grouping the Digits

    Oct 09, 24 05:16 PM

    Place Value of 3-Digit Numbers
    The place value of a digit in a number is the value it holds to be at the place in the number. We know about the place value and face value of a digit and we will learn about it in details. We know th…

    Read More

  5. 3-digit Numbers on an Abacus | Learning Three Digit Numbers | Math

    Oct 08, 24 10:53 AM

    3-Digit Numbers on an Abacus
    We already know about hundreds, tens and ones. Now let us learn how to represent 3-digit numbers on an abacus. We know, an abacus is a tool or a toy for counting. An abacus which has three rods.

    Read More