Transverse and Conjugate Axis of the Hyperbola

We will discuss about the transverse and conjugate axis of the hyperbola along with the examples.


Definition of the transverse axis of the hyperbola:

The transverse axis is the axis of a hyperbola that passes through the two foci.

The straight line joining the vertices A and A’ is called the transverse axis of the hyperbola.

AA' i.e., the line segment joining the vertices of a hyperbola is called its Transverse Axis. The transverse axis of the hyperbola \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1 is along the x-axis and its length is 2a.

Transverse and Conjugate Axis of the Hyperbola

The straight line through the centre which is perpendicular to the transverse axis does not meet the hyperbola in real points.

Definition of the conjugate axis of the hyperbola:

If two points B and B' are on the y-axis such that CB = CB’ = b, then the line segment BB’ is called the conjugate axis of the hyperbola. Therefore, the length of conjugate axis = 2b.


Solved examples to find the transverse and conjugate axes of an hyperbola:

1. Find the lengths of transverse and conjugate axis of the hyperbola 16x\(^{2}\) - 9y\(^{2}\) = 144.

Solution:

The given equation of the hyperbola is 16x\(^{2}\) - 9y\(^{2}\) = 144.

The equation of the hyperbola 16x\(^{2}\) - 9y\(^{2}\) = 144 can be written as

\(\frac{x^{2}}{9}\) - \(\frac{y^{2}}{16}\) = 1 ……………… (i)

The above equation (i) is of the form \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1, where a\(^{2}\) = 9 and b\(^{2}\) = 16.

Therefore, the length of the transverse axis is 2a = 2 ∙ 3 = 6 and the length of the conjugate axis is 2b = 2 ∙ 4 = 8.


2. Find the lengths of transverse and conjugate axis of the hyperbola 16x\(^{2}\) - 9y\(^{2}\) = 144.

Solution:

The given equation of the hyperbola is 3x\(^{2}\) - 6y\(^{2}\) = -18.

The equation of the hyperbola 3x\(^{2}\) - 6y\(^{2}\) = -18 can be written as

\(\frac{x^{2}}{6}\) - \(\frac{y^{2}}{3}\) = 1 ……………… (i)

The above equation (i) is of the form \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = -1, where a\(^{2}\) = 6 and b\(^{2}\) = 3.

Therefore, the length of the transverse axis is 2b = 2 ∙ √3 = 2√3 and the length of the conjugate axis is 2a = 2 ∙ √6 = 2√6.

The Hyperbola






11 and 12 Grade Math 

From Transverse and Conjugate Axis of the Hyperbola to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 12, 24 09:20 AM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  2. Types of Lines |Straight Lines|Curved Lines|Horizontal Lines| Vertical

    Dec 09, 24 10:39 PM

    Types of Lines
    What are the different types of lines? There are two different kinds of lines. (i) Straight line and (ii) Curved line. There are three different types of straight lines. (i) Horizontal lines, (ii) Ver…

    Read More

  3. Points and Line Segment | Two Points in a Curved Surface | Curve Line

    Dec 09, 24 01:08 AM

    Curved Lines and Straight Line
    We will discuss here about points and line segment. We know when two lines meet we get a point. When two points on a plane surface are joined, a straight line segment is obtained.

    Read More

  4. Solid Shapes | Basic Geometric Shapes | Common Solid Figures | Plane

    Dec 08, 24 11:19 PM

    Solid Shapes
    We will discuss about basic solid shapes. We see a variety of solid objects in our surroundings. Solid objects have one or more shapes like the following. Match the objects with similar shape.

    Read More

  5. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 07, 24 03:38 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More