Transverse and Conjugate Axis of the Hyperbola

We will discuss about the transverse and conjugate axis of the hyperbola along with the examples.


Definition of the transverse axis of the hyperbola:

The transverse axis is the axis of a hyperbola that passes through the two foci.

The straight line joining the vertices A and A’ is called the transverse axis of the hyperbola.

AA' i.e., the line segment joining the vertices of a hyperbola is called its Transverse Axis. The transverse axis of the hyperbola \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1 is along the x-axis and its length is 2a.

Transverse and Conjugate Axis of the Hyperbola

The straight line through the centre which is perpendicular to the transverse axis does not meet the hyperbola in real points.

Definition of the conjugate axis of the hyperbola:

If two points B and B' are on the y-axis such that CB = CB’ = b, then the line segment BB’ is called the conjugate axis of the hyperbola. Therefore, the length of conjugate axis = 2b.


Solved examples to find the transverse and conjugate axes of an hyperbola:

1. Find the lengths of transverse and conjugate axis of the hyperbola 16x\(^{2}\) - 9y\(^{2}\) = 144.

Solution:

The given equation of the hyperbola is 16x\(^{2}\) - 9y\(^{2}\) = 144.

The equation of the hyperbola 16x\(^{2}\) - 9y\(^{2}\) = 144 can be written as

\(\frac{x^{2}}{9}\) - \(\frac{y^{2}}{16}\) = 1 ……………… (i)

The above equation (i) is of the form \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1, where a\(^{2}\) = 9 and b\(^{2}\) = 16.

Therefore, the length of the transverse axis is 2a = 2 ∙ 3 = 6 and the length of the conjugate axis is 2b = 2 ∙ 4 = 8.


2. Find the lengths of transverse and conjugate axis of the hyperbola 16x\(^{2}\) - 9y\(^{2}\) = 144.

Solution:

The given equation of the hyperbola is 3x\(^{2}\) - 6y\(^{2}\) = -18.

The equation of the hyperbola 3x\(^{2}\) - 6y\(^{2}\) = -18 can be written as

\(\frac{x^{2}}{6}\) - \(\frac{y^{2}}{3}\) = 1 ……………… (i)

The above equation (i) is of the form \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = -1, where a\(^{2}\) = 6 and b\(^{2}\) = 3.

Therefore, the length of the transverse axis is 2b = 2 ∙ √3 = 2√3 and the length of the conjugate axis is 2a = 2 ∙ √6 = 2√6.

The Hyperbola






11 and 12 Grade Math 

From Transverse and Conjugate Axis of the Hyperbola to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Properties of Division | Division of Property Overview|Math Properties

    Jan 22, 25 01:30 AM

    Properties of Division
    The properties of division are discussed here: 1. If we divide a number by 1 the quotient is the number itself. In other words, when any number is divided by 1, we always get the number itself as the…

    Read More

  2. Terms Used in Division | Dividend | Divisor | Quotient | Remainder

    Jan 22, 25 12:54 AM

    Divide 12 Candies
    The terms used in division are dividend, divisor, quotient and remainder. Division is repeated subtraction. For example: 24 ÷ 6 How many times would you subtract 6 from 24 to reach 0?

    Read More

  3. Divide on a Number Line | Various Division Problems | Solved Examples

    Jan 22, 25 12:41 AM

    How to divide on a number line? Learn to divide using number line to find the quotient. Solved examples to show divide on a number line: 1. Solve 14 ÷ 7 Solution: 7 is subtracted repeatedly

    Read More

  4. Divide by Repeated Subtraction | Division as Repeated Subtraction

    Jan 22, 25 12:18 AM

    Divide by Repeated Subtraction
    How to divide by repeated subtraction? We will learn how to find the quotient and remainder by the method of repeated subtraction a division problem may be solved.

    Read More

  5. Division Sharing and Grouping | Facts about Division | Basic Division

    Jan 21, 25 08:06 AM

    Sharing and Grouping
    We will learn division sharing and grouping. Share eight strawberries between four children. Let us distribute strawberries equally to all the four children one by one.

    Read More