Centre of the Hyperbola

We will discuss about the hyperbola of the ellipse along with the examples.

The centre of a conic section is a point which bisects every chord passing through it.


Definition of the Centre of the Hyperbola:

The mid-point of the line-segment joining the vertices of an hyperbola is called its centre.

Suppose the equation of the hyperbola be \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1 then, from the above figure we observe that C is the mid-point of the line-segment AA', where A and A' are the two vertices. In case of the hyperbola \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1, every chord is bisected at C (0, 0).

Centre of the Hyperbola

Therefore, C is the centre of the hyperbola and its co-ordinates are (0, 0).

Solved examples to find the centre of an hyperbola:

1. Find the co-ordinates of the centre of the hyperbola 3x\(^{2}\) - 2y\(^{2}\) - 6 = 0.

Solution:

The given equation of the hyperbola is 3x\(^{2}\) - 2y\(^{2}\) - 6 = 0.

Now form the above equation we get,

3x\(^{2}\) - 2y\(^{2}\) - 6 = 0

⇒ 3x\(^{2}\) - 2y\(^{2}\) = 6

Now dividing both sides by 6, we get

\(\frac{x^{2}}{2}\) - \(\frac{y^{2}}{3}\) = 1 ………….. (i)

This equation is of the form \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1 (a\(^{2}\) > b\(^{2}\)).

Clearly, the centre of the hyperbola (1) is at the origin.

Therefore, the co-ordinates of the centre of the hyperbola 3x\(^{2}\) - 2y\(^{2}\) - 6 = 0 is (0, 0)

 

2. Find the co-ordinates of the centre the hyperbola 5x\(^{2}\) - 9y\(^{2}\) - 10x + 90y + 185 = 0.

Solution:    

The given equation of the hyperbola is 5x\(^{2}\) - 9y\(^{2}\) - 10x - 90y - 265 = 0.

Now form the above equation we get,

5x\(^{2}\) - 9y\(^{2}\) - 10x - 90y - 265 = 0

⇒ 5x\(^{2}\) - 10x + 5 - 9y\(^{2}\) - 90y - 225 - 265 - 5 + 225 = 0

⇒ 5(x\(^{2}\) - 2x + 1) - 9(y\(^{2}\) + 10y + 25) =  45

\(\frac{(x - 1)^{2}}{9}\) - \(\frac{(y + 5)^{2}}{5}\) = 1

We know that the equation of the hyperbola having centre at (α, β) and major and minor axes parallel to x and y-axes respectively is, \(\frac{(x - α)^{2}}{a^{2}}\) - \(\frac{(y - β)^{2}}{b^{2}}\) = 1.

Now, comparing equation \(\frac{(x - 1)^{2}}{9}\) - \(\frac{(y + 5)^{2}}{5}\) = 1 with equation \(\frac{(x - α)^{2}}{a^{2}}\) - \(\frac{(y - β)^{2}}{b^{2}}\) = 1 we get,

α = 1, β = - 5, a\(^{2}\) = 9 ⇒ a = 3 and b\(^{2}\) = 5 ⇒ b = √5.

Therefore, the co-ordinates of its centre are (α, β) i.e., (1, - 5).

The Hyperbola




11 and 12 Grade Math 

From Centre of the Hyperbola to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Fraction as a Part of Collection | Pictures of Fraction | Fractional

    Feb 24, 24 04:33 PM

    Pictures of Fraction
    How to find fraction as a part of collection? Let there be 14 rectangles forming a box or rectangle. Thus, it can be said that there is a collection of 14 rectangles, 2 rectangles in each row. If it i…

    Read More

  2. Fraction of a Whole Numbers | Fractional Number |Examples with Picture

    Feb 24, 24 04:11 PM

    A Collection of Apples
    Fraction of a whole numbers are explained here with 4 following examples. There are three shapes: (a) circle-shape (b) rectangle-shape and (c) square-shape. Each one is divided into 4 equal parts. One…

    Read More

  3. Identification of the Parts of a Fraction | Fractional Numbers | Parts

    Feb 24, 24 04:10 PM

    Fractional Parts
    We will discuss here about the identification of the parts of a fraction. We know fraction means part of something. Fraction tells us, into how many parts a whole has been

    Read More

  4. Numerator and Denominator of a Fraction | Numerator of the Fraction

    Feb 24, 24 04:09 PM

    What are the numerator and denominator of a fraction? We have already learnt that a fraction is written with two numbers arranged one over the other and separated by a line.

    Read More

  5. Roman Numerals | System of Numbers | Symbol of Roman Numerals |Numbers

    Feb 24, 24 10:59 AM

    List of Roman Numerals Chart
    How to read and write roman numerals? Hundreds of year ago, the Romans had a system of numbers which had only seven symbols. Each symbol had a different value and there was no symbol for 0. The symbol…

    Read More