Hyperbola Formulae

Hyperbola formulae will help us to solve different types of problems on hyperbola in co-ordinate geometry.

1. \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1, (a > b)

(i) The co-ordinates of the centre are (0, 0).

(ii) The co-ordinates of the vertices are (± a, 0) i.e., (-a, 0) and (a, 0).

(iii) The co-ordinates of the foci are (± ae, 0) i.e., (- ae, 0) and (ae, 0)

(iv) The length of transverse axis = 2a and the length of conjugate axis = 2b.

(v) The transverse axis is along x axis and the equations of transverse axes is y = 0.

(vi) The conjugate axis is along y axis and the equations of conjugate axes is x = 0.

(vii) The equations of the directrices are: x = ± \(\frac{a}{e}\) i.e., x = - \(\frac{a}{e}\) and x = \(\frac{a}{e}\).

(viii) The eccentricity of the hyperbola is b\(^{2}\) = a\(^{2}\)(e\(^{2}\) - 1) or, e = \(\sqrt{1 + \frac{b^{2}}{a^{2}}}\).

(ix) The length of the latus rectum 2 ∙ \(\frac{b^{2}}{a}\) = 2a(e\(^{2}\) - 1).

(x) The distance between the two foci = 2ae.

(xi) The distance between two directrices = 2 ∙ \(\frac{a}{e}\).

(xii) Focal distances of a point (x, y) are a ± ex

(xiii) The co-ordinates of the four ends of latera recta are (ae, \(\frac{b^{2}}{a}\)), (ae, -\(\frac{b^{2}}{a}\)), (- ae, \(\frac{b^{2}}{a}\)) and (- ae, -\(\frac{b^{2}}{a}\)).

(xiv) The equations of latera recta are x = ± ae i.e., x = ae and x = -ae.

                      

2. \(\frac{x^{2}}{b^{2}}\) - \(\frac{y^{2}}{a^{2}}\) = 1, (a > b)

(i) The co-ordinates of the centre are (0, 0).

(ii) The co-ordinates of the vertices are (0, ± a) i.e., (0, -a) and (0, a).

(iii) The co-ordinates of the foci are (0, ± ae) i.e., (0, - ae) and (0, ae)

(iv) The length of transverse axis = 2a and the length of conjugate axis = 2b.

(v) The transverse axis is along Y-axis and the equations of conjugate axes is x = 0.

(vi) The transverse axis is along X-axis and the equations of conjugate axes is y = 0.

(vii) The equations of the directrices are: y = ± \(\frac{a}{e}\) i.e., y = - \(\frac{a}{e}\) and y = \(\frac{a}{e}\).

(viii) The eccentricity of the hyperbola is b2 = a\(^{2}\)(e\(^{2}\) - 1) or,  e = \(\sqrt{1 + \frac{b^{2}}{a^{2}}}\)

(ix) The length of the latus rectum 2 ∙ \(\frac{b^{2}}{a}\) = 2a (e\(^{2}\) - 1).

(x) The distance between the two foci = 2ae.

(xi) The distance between two directrices = 2 ∙ \(\frac{a}{e}\).

(xii) Focal distances of a point (x, y) are a ± ey

(xiii) The co-ordinates of the four ends of latera recta are (\(\frac{b^{2}}{a}\), ae), (-\(\frac{b^{2}}{a}\), ae), (\(\frac{b^{2}}{a}\), -ae) and (-\(\frac{b^{2}}{a}\), -ae).

(xiv) The equations of latera recta are y = ± ae i.e., y = ae and y = -ae.


3. \(\frac{(x - α)^{2}}{a^{2}}\) - \(\frac{(y - β)^{2}}{b^{2}}\) = 1, (a > b)

(i) The co-ordinates of the centre are (α, β).

(ii) The co-ordinates of the vertices are (α ± a, β) i.e., (α - a, β) and (α + a, β).

(iii) The co-ordinates of the foci are (α ± ae, β) i.e., (α - ae, β) and (α + ae, β)

(iv) The length of transverse axis = 2a and the length of conjugate axis = 2b.

(v) The transverse axis is along parallel to x axis and the equations of transverse axes is y = β.

(vi) The conjugate axis is along parallel to y axis and the equations of conjugate axes is x = α.

(vii) The equations of the directrices are: x = α ± \(\frac{a}{e}\) i.e., x = α - \(\frac{a}{e}\) and x = α + \(\frac{a}{e}\).

(viii) The eccentricity of the hyperbola is b\(^{2}\) = a\(^{2}\)(e\(^{2}\) - 1) or, e = \(\sqrt{1 + \frac{b^{2}}{a^{2}}}\)

(ix) The length of the latus rectum 2 ∙ \(\frac{b^{2}}{a}\) = 2a (e\(^{2}\) - 1).

(x) The distance between the two foci = 2ae.

(xi) The distance between two directrices = 2 ∙ \(\frac{a}{e}\).


4. \(\frac{(x - α)^{2}}{b^{2}}\) - \(\frac{(y - β)^{2}}{a^{2}}\) = 1, (a > b)

(i) The co-ordinates of the centre are (α, β).

(ii) The co-ordinates of the vertices are (α, β ± a) i.e., (α, β - a) and (α, β + a).

(iii) The co-ordinates of the foci are (α, β ± ae) i.e., (α, β - ae) and (α, β + ae).

(iv) The length of transverse axis = 2a and the length of conjugate axis = 2b.

(v) The transverse axis is along parallel to Y-axis and the equations of transverse axes is x = α.

(vi) The conjugate axis is along parallel to X-axis and the equations of conjugate axes is y = β.

(vii) The equations of the directrices are: y = β ± \(\frac{a}{e}\) i.e., y = β - \(\frac{a}{e}\) and y = β + \(\frac{a}{e}\).

(viii) The eccentricity of the hyperbola is b\(^{2}\) = a\(^{2}\)(e\(^{2}\) - 1) or, e = \(\sqrt{1 + \frac{b^{2}}{a^{2}}}\)

(ix) The length of the latus rectum 2 ∙ \(\frac{b^{2}}{a}\) = 2a (e\(^{2}\) - 1).

(x) The distance between the two foci = 2ae.

(xi) The distance between two directrices = 2 ∙ \(\frac{a}{e}\).


5. The point P (x\(_{1}\), y\(_{1}\)) lies outside, on or inside the hyperbola \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1 according as \(\frac{x_{1}^{2}}{a^{2}}\) - \(\frac{y_{1}^{2}}{b^{2}}\) – 1 < 0, = or > 0.

6. If \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1 is an hyperbola, then its auxiliary circle is x\(^{2}\) + y\(^{2}\) = a\(^{2}\).

7. The equations x = a sec θ, y = b tan θ taken together are called the parametric equations of the hyperbola \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1

8. The co-ordinates of the point having eccentric angle θ can be written as (a sec θ, b tan θ). Here (a sec θ, b tan θ) are known as the parametric co-ordinates of the point P.

9. The equation of rectangular hyperbola is x\(^{2}\) - y\(^{2}\) = a\(^{2}\).

Some of the properties of rectangular hyperbola:

(i) The transverse axis is along x-axis

(ii) The conjugate axis is along y-axis

(iii) The length of transverse axis = 2a

(iv) The length of conjugate axis = 2a

(v) The eccentricity of the rectangular hyperbola = √2.


10. The conjugate hyperbola of the hyperbola \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1 is - \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1

In other wards two hyperbolas \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1 …………………(i) and - \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1 ……………….(ii) are conjugate to one another, if e1 and e2 he the eccentricities of (i) and (ii) respectively, then b\(^{2}\) = a\(^{2}\)(e\(_{1}\)\(^{2}\)  - 1) and a\(^{2}\) = b\(^{2}\)(e\(_{2}\)\(^{2}\)  - 1).

The Hyperbola





11 and 12 Grade Math

From Hyperbola Formulae to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Multiplying 2-Digit Number by 1-Digit Number | Multiply Two-Digit Numb

    Oct 21, 24 03:38 PM

    Multiplying 2-Digit Number by 1-Digit Number
    Here we will learn multiplying 2-digit number by 1-digit number. In two different ways we will learn to multiply a two-digit number by a one-digit number. Examples of multiplying 2-digit number by

    Read More

  2. Multiplication Table of 4 |Read and Write the Table of 4|4 Times Table

    Oct 21, 24 02:26 AM

    Multiplication Table of Four
    Repeated addition by 4’s means the multiplication table of 4. (i) When 5 candle-stands having four candles each. By repeated addition we can show 4 + 4 + 4 + 4 + 4 = 20 Then, four 5 times

    Read More

  3. Multiplying 3-Digit Number by 1-Digit Number | Three-Digit Multiplicat

    Oct 21, 24 02:16 AM

    Multiplying 3-Digit Number by 1-Digit Number
    Here we will learn multiplying 3-digit number by 1-digit number. In two different ways we will learn to multiply a two-digit number by a one-digit number. 1. Multiply 201 by 3 Step I: Arrange the numb…

    Read More

  4. Concept of Multiplication | What is Multiplication? | Basics Math

    Oct 21, 24 01:05 AM

    Multiplication Fact 8 × 2
    Multiplication is repeated addition of a number to itself. Study the following example to understand it: Example: Take 3 groups of 2 pens each as shown below. How many pens are there in all?

    Read More

  5. Properties of Multiplication | Multiplicative Identity | Whole Numbers

    Oct 21, 24 12:50 AM

    Properties of Multiplication of Whole Numbers
    There are six properties of multiplication of whole numbers that will help to solve the problems easily. The six properties of multiplication are Closure Property, Commutative Property, Zero Property…

    Read More