Hyperbola Formulae

Hyperbola formulae will help us to solve different types of problems on hyperbola in co-ordinate geometry.

1. \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1, (a > b)

(i) The co-ordinates of the centre are (0, 0).

(ii) The co-ordinates of the vertices are (± a, 0) i.e., (-a, 0) and (a, 0).

(iii) The co-ordinates of the foci are (± ae, 0) i.e., (- ae, 0) and (ae, 0)

(iv) The length of transverse axis = 2a and the length of conjugate axis = 2b.

(v) The transverse axis is along x axis and the equations of transverse axes is y = 0.

(vi) The conjugate axis is along y axis and the equations of conjugate axes is x = 0.

(vii) The equations of the directrices are: x = ± \(\frac{a}{e}\) i.e., x = - \(\frac{a}{e}\) and x = \(\frac{a}{e}\).

(viii) The eccentricity of the hyperbola is b\(^{2}\) = a\(^{2}\)(e\(^{2}\) - 1) or, e = \(\sqrt{1 + \frac{b^{2}}{a^{2}}}\).

(ix) The length of the latus rectum 2 ∙ \(\frac{b^{2}}{a}\) = 2a(e\(^{2}\) - 1).

(x) The distance between the two foci = 2ae.

(xi) The distance between two directrices = 2 ∙ \(\frac{a}{e}\).

(xii) Focal distances of a point (x, y) are a ± ex

(xiii) The co-ordinates of the four ends of latera recta are (ae, \(\frac{b^{2}}{a}\)), (ae, -\(\frac{b^{2}}{a}\)), (- ae, \(\frac{b^{2}}{a}\)) and (- ae, -\(\frac{b^{2}}{a}\)).

(xiv) The equations of latera recta are x = ± ae i.e., x = ae and x = -ae.

                      

2. \(\frac{x^{2}}{b^{2}}\) - \(\frac{y^{2}}{a^{2}}\) = 1, (a > b)

(i) The co-ordinates of the centre are (0, 0).

(ii) The co-ordinates of the vertices are (0, ± a) i.e., (0, -a) and (0, a).

(iii) The co-ordinates of the foci are (0, ± ae) i.e., (0, - ae) and (0, ae)

(iv) The length of transverse axis = 2a and the length of conjugate axis = 2b.

(v) The transverse axis is along Y-axis and the equations of conjugate axes is x = 0.

(vi) The transverse axis is along X-axis and the equations of conjugate axes is y = 0.

(vii) The equations of the directrices are: y = ± \(\frac{a}{e}\) i.e., y = - \(\frac{a}{e}\) and y = \(\frac{a}{e}\).

(viii) The eccentricity of the hyperbola is b2 = a\(^{2}\)(e\(^{2}\) - 1) or,  e = \(\sqrt{1 + \frac{b^{2}}{a^{2}}}\)

(ix) The length of the latus rectum 2 ∙ \(\frac{b^{2}}{a}\) = 2a (e\(^{2}\) - 1).

(x) The distance between the two foci = 2ae.

(xi) The distance between two directrices = 2 ∙ \(\frac{a}{e}\).

(xii) Focal distances of a point (x, y) are a ± ey

(xiii) The co-ordinates of the four ends of latera recta are (\(\frac{b^{2}}{a}\), ae), (-\(\frac{b^{2}}{a}\), ae), (\(\frac{b^{2}}{a}\), -ae) and (-\(\frac{b^{2}}{a}\), -ae).

(xiv) The equations of latera recta are y = ± ae i.e., y = ae and y = -ae.


3. \(\frac{(x - α)^{2}}{a^{2}}\) - \(\frac{(y - β)^{2}}{b^{2}}\) = 1, (a > b)

(i) The co-ordinates of the centre are (α, β).

(ii) The co-ordinates of the vertices are (α ± a, β) i.e., (α - a, β) and (α + a, β).

(iii) The co-ordinates of the foci are (α ± ae, β) i.e., (α - ae, β) and (α + ae, β)

(iv) The length of transverse axis = 2a and the length of conjugate axis = 2b.

(v) The transverse axis is along parallel to x axis and the equations of transverse axes is y = β.

(vi) The conjugate axis is along parallel to y axis and the equations of conjugate axes is x = α.

(vii) The equations of the directrices are: x = α ± \(\frac{a}{e}\) i.e., x = α - \(\frac{a}{e}\) and x = α + \(\frac{a}{e}\).

(viii) The eccentricity of the hyperbola is b\(^{2}\) = a\(^{2}\)(e\(^{2}\) - 1) or, e = \(\sqrt{1 + \frac{b^{2}}{a^{2}}}\)

(ix) The length of the latus rectum 2 ∙ \(\frac{b^{2}}{a}\) = 2a (e\(^{2}\) - 1).

(x) The distance between the two foci = 2ae.

(xi) The distance between two directrices = 2 ∙ \(\frac{a}{e}\).


4. \(\frac{(x - α)^{2}}{b^{2}}\) - \(\frac{(y - β)^{2}}{a^{2}}\) = 1, (a > b)

(i) The co-ordinates of the centre are (α, β).

(ii) The co-ordinates of the vertices are (α, β ± a) i.e., (α, β - a) and (α, β + a).

(iii) The co-ordinates of the foci are (α, β ± ae) i.e., (α, β - ae) and (α, β + ae).

(iv) The length of transverse axis = 2a and the length of conjugate axis = 2b.

(v) The transverse axis is along parallel to Y-axis and the equations of transverse axes is x = α.

(vi) The conjugate axis is along parallel to X-axis and the equations of conjugate axes is y = β.

(vii) The equations of the directrices are: y = β ± \(\frac{a}{e}\) i.e., y = β - \(\frac{a}{e}\) and y = β + \(\frac{a}{e}\).

(viii) The eccentricity of the hyperbola is b\(^{2}\) = a\(^{2}\)(e\(^{2}\) - 1) or, e = \(\sqrt{1 + \frac{b^{2}}{a^{2}}}\)

(ix) The length of the latus rectum 2 ∙ \(\frac{b^{2}}{a}\) = 2a (e\(^{2}\) - 1).

(x) The distance between the two foci = 2ae.

(xi) The distance between two directrices = 2 ∙ \(\frac{a}{e}\).


5. The point P (x\(_{1}\), y\(_{1}\)) lies outside, on or inside the hyperbola \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1 according as \(\frac{x_{1}^{2}}{a^{2}}\) - \(\frac{y_{1}^{2}}{b^{2}}\) – 1 < 0, = or > 0.

6. If \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1 is an hyperbola, then its auxiliary circle is x\(^{2}\) + y\(^{2}\) = a\(^{2}\).

7. The equations x = a sec θ, y = b tan θ taken together are called the parametric equations of the hyperbola \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1

8. The co-ordinates of the point having eccentric angle θ can be written as (a sec θ, b tan θ). Here (a sec θ, b tan θ) are known as the parametric co-ordinates of the point P.

9. The equation of rectangular hyperbola is x\(^{2}\) - y\(^{2}\) = a\(^{2}\).

Some of the properties of rectangular hyperbola:

(i) The transverse axis is along x-axis

(ii) The conjugate axis is along y-axis

(iii) The length of transverse axis = 2a

(iv) The length of conjugate axis = 2a

(v) The eccentricity of the rectangular hyperbola = √2.


10. The conjugate hyperbola of the hyperbola \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1 is - \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1

In other wards two hyperbolas \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1 …………………(i) and - \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1 ……………….(ii) are conjugate to one another, if e1 and e2 he the eccentricities of (i) and (ii) respectively, then b\(^{2}\) = a\(^{2}\)(e\(_{1}\)\(^{2}\)  - 1) and a\(^{2}\) = b\(^{2}\)(e\(_{2}\)\(^{2}\)  - 1).

The Hyperbola





11 and 12 Grade Math

From Hyperbola Formulae to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    Dec 13, 24 08:43 AM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  2. Patterns in Math | Missing Number | Counting Numbers | Worksheets

    Dec 13, 24 12:31 AM

    Finding patterns in math is very important to understand the sequence in the series. We need to find the exact missing number that from the group of numbers. The counting numbers may be counting

    Read More

  3. Concept of Pattern | Similar Patterns in Mathematics | Similar Pattern

    Dec 12, 24 11:22 PM

    Patterns in Necklace
    Concept of pattern will help us to learn the basic number patterns and table patterns. Animals such as all cows, all lions, all dogs and all other animals have dissimilar features. All mangoes have si…

    Read More

  4. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 12, 24 10:31 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  5. Types of Lines |Straight Lines|Curved Lines|Horizontal Lines| Vertical

    Dec 09, 24 10:39 PM

    Types of Lines
    What are the different types of lines? There are two different kinds of lines. (i) Straight line and (ii) Curved line. There are three different types of straight lines. (i) Horizontal lines, (ii) Ver…

    Read More