Hyperbola Formulae

Hyperbola formulae will help us to solve different types of problems on hyperbola in co-ordinate geometry.

1. \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1, (a > b)

(i) The co-ordinates of the centre are (0, 0).

(ii) The co-ordinates of the vertices are (± a, 0) i.e., (-a, 0) and (a, 0).

(iii) The co-ordinates of the foci are (± ae, 0) i.e., (- ae, 0) and (ae, 0)

(iv) The length of transverse axis = 2a and the length of conjugate axis = 2b.

(v) The transverse axis is along x axis and the equations of transverse axes is y = 0.

(vi) The conjugate axis is along y axis and the equations of conjugate axes is x = 0.

(vii) The equations of the directrices are: x = ± \(\frac{a}{e}\) i.e., x = - \(\frac{a}{e}\) and x = \(\frac{a}{e}\).

(viii) The eccentricity of the hyperbola is b\(^{2}\) = a\(^{2}\)(e\(^{2}\) - 1) or, e = \(\sqrt{1 + \frac{b^{2}}{a^{2}}}\).

(ix) The length of the latus rectum 2 ∙ \(\frac{b^{2}}{a}\) = 2a(e\(^{2}\) - 1).

(x) The distance between the two foci = 2ae.

(xi) The distance between two directrices = 2 ∙ \(\frac{a}{e}\).

(xii) Focal distances of a point (x, y) are a ± ex

(xiii) The co-ordinates of the four ends of latera recta are (ae, \(\frac{b^{2}}{a}\)), (ae, -\(\frac{b^{2}}{a}\)), (- ae, \(\frac{b^{2}}{a}\)) and (- ae, -\(\frac{b^{2}}{a}\)).

(xiv) The equations of latera recta are x = ± ae i.e., x = ae and x = -ae.

                      

2. \(\frac{x^{2}}{b^{2}}\) - \(\frac{y^{2}}{a^{2}}\) = 1, (a > b)

(i) The co-ordinates of the centre are (0, 0).

(ii) The co-ordinates of the vertices are (0, ± a) i.e., (0, -a) and (0, a).

(iii) The co-ordinates of the foci are (0, ± ae) i.e., (0, - ae) and (0, ae)

(iv) The length of transverse axis = 2a and the length of conjugate axis = 2b.

(v) The transverse axis is along Y-axis and the equations of conjugate axes is x = 0.

(vi) The transverse axis is along X-axis and the equations of conjugate axes is y = 0.

(vii) The equations of the directrices are: y = ± \(\frac{a}{e}\) i.e., y = - \(\frac{a}{e}\) and y = \(\frac{a}{e}\).

(viii) The eccentricity of the hyperbola is b2 = a\(^{2}\)(e\(^{2}\) - 1) or,  e = \(\sqrt{1 + \frac{b^{2}}{a^{2}}}\)

(ix) The length of the latus rectum 2 ∙ \(\frac{b^{2}}{a}\) = 2a (e\(^{2}\) - 1).

(x) The distance between the two foci = 2ae.

(xi) The distance between two directrices = 2 ∙ \(\frac{a}{e}\).

(xii) Focal distances of a point (x, y) are a ± ey

(xiii) The co-ordinates of the four ends of latera recta are (\(\frac{b^{2}}{a}\), ae), (-\(\frac{b^{2}}{a}\), ae), (\(\frac{b^{2}}{a}\), -ae) and (-\(\frac{b^{2}}{a}\), -ae).

(xiv) The equations of latera recta are y = ± ae i.e., y = ae and y = -ae.


3. \(\frac{(x - α)^{2}}{a^{2}}\) - \(\frac{(y - β)^{2}}{b^{2}}\) = 1, (a > b)

(i) The co-ordinates of the centre are (α, β).

(ii) The co-ordinates of the vertices are (α ± a, β) i.e., (α - a, β) and (α + a, β).

(iii) The co-ordinates of the foci are (α ± ae, β) i.e., (α - ae, β) and (α + ae, β)

(iv) The length of transverse axis = 2a and the length of conjugate axis = 2b.

(v) The transverse axis is along parallel to x axis and the equations of transverse axes is y = β.

(vi) The conjugate axis is along parallel to y axis and the equations of conjugate axes is x = α.

(vii) The equations of the directrices are: x = α ± \(\frac{a}{e}\) i.e., x = α - \(\frac{a}{e}\) and x = α + \(\frac{a}{e}\).

(viii) The eccentricity of the hyperbola is b\(^{2}\) = a\(^{2}\)(e\(^{2}\) - 1) or, e = \(\sqrt{1 + \frac{b^{2}}{a^{2}}}\)

(ix) The length of the latus rectum 2 ∙ \(\frac{b^{2}}{a}\) = 2a (e\(^{2}\) - 1).

(x) The distance between the two foci = 2ae.

(xi) The distance between two directrices = 2 ∙ \(\frac{a}{e}\).


4. \(\frac{(x - α)^{2}}{b^{2}}\) - \(\frac{(y - β)^{2}}{a^{2}}\) = 1, (a > b)

(i) The co-ordinates of the centre are (α, β).

(ii) The co-ordinates of the vertices are (α, β ± a) i.e., (α, β - a) and (α, β + a).

(iii) The co-ordinates of the foci are (α, β ± ae) i.e., (α, β - ae) and (α, β + ae).

(iv) The length of transverse axis = 2a and the length of conjugate axis = 2b.

(v) The transverse axis is along parallel to Y-axis and the equations of transverse axes is x = α.

(vi) The conjugate axis is along parallel to X-axis and the equations of conjugate axes is y = β.

(vii) The equations of the directrices are: y = β ± \(\frac{a}{e}\) i.e., y = β - \(\frac{a}{e}\) and y = β + \(\frac{a}{e}\).

(viii) The eccentricity of the hyperbola is b\(^{2}\) = a\(^{2}\)(e\(^{2}\) - 1) or, e = \(\sqrt{1 + \frac{b^{2}}{a^{2}}}\)

(ix) The length of the latus rectum 2 ∙ \(\frac{b^{2}}{a}\) = 2a (e\(^{2}\) - 1).

(x) The distance between the two foci = 2ae.

(xi) The distance between two directrices = 2 ∙ \(\frac{a}{e}\).


5. The point P (x\(_{1}\), y\(_{1}\)) lies outside, on or inside the hyperbola \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1 according as \(\frac{x_{1}^{2}}{a^{2}}\) - \(\frac{y_{1}^{2}}{b^{2}}\) – 1 < 0, = or > 0.

6. If \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1 is an hyperbola, then its auxiliary circle is x\(^{2}\) + y\(^{2}\) = a\(^{2}\).

7. The equations x = a sec θ, y = b tan θ taken together are called the parametric equations of the hyperbola \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1

8. The co-ordinates of the point having eccentric angle θ can be written as (a sec θ, b tan θ). Here (a sec θ, b tan θ) are known as the parametric co-ordinates of the point P.

9. The equation of rectangular hyperbola is x\(^{2}\) - y\(^{2}\) = a\(^{2}\).

Some of the properties of rectangular hyperbola:

(i) The transverse axis is along x-axis

(ii) The conjugate axis is along y-axis

(iii) The length of transverse axis = 2a

(iv) The length of conjugate axis = 2a

(v) The eccentricity of the rectangular hyperbola = √2.


10. The conjugate hyperbola of the hyperbola \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1 is - \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1

In other wards two hyperbolas \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1 …………………(i) and - \(\frac{x^{2}}{a^{2}}\) + \(\frac{y^{2}}{b^{2}}\) = 1 ……………….(ii) are conjugate to one another, if e1 and e2 he the eccentricities of (i) and (ii) respectively, then b\(^{2}\) = a\(^{2}\)(e\(_{1}\)\(^{2}\)  - 1) and a\(^{2}\) = b\(^{2}\)(e\(_{2}\)\(^{2}\)  - 1).

The Hyperbola





11 and 12 Grade Math

From Hyperbola Formulae to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Method of H.C.F. |Highest Common Factor|Factorization &Division Method

    Apr 13, 24 05:12 PM

    HCF by Short Division Method
    We will discuss here about the method of h.c.f. (highest common factor). The highest common factor or HCF of two or more numbers is the greatest number which divides exactly the given numbers. Let us…

    Read More

  2. Factors | Understand the Factors of the Product | Concept of Factors

    Apr 13, 24 03:29 PM

    Factors
    Factors of a number are discussed here so that students can understand the factors of the product. What are factors? (i) If a dividend, when divided by a divisor, is divided completely

    Read More

  3. Methods of Prime Factorization | Division Method | Factor Tree Method

    Apr 13, 24 01:27 PM

    Factor Tree Method
    In prime factorization, we factorise the numbers into prime numbers, called prime factors. There are two methods of prime factorization: 1. Division Method 2. Factor Tree Method

    Read More

  4. Divisibility Rules | Divisibility Test|Divisibility Rules From 2 to 18

    Apr 13, 24 12:41 PM

    Divisibility Rules
    To find out factors of larger numbers quickly, we perform divisibility test. There are certain rules to check divisibility of numbers. Divisibility tests of a given number by any of the number 2, 3, 4…

    Read More

  5. Even and Odd Numbers Between 1 and 100 | Even and Odd Numbers|Examples

    Apr 12, 24 04:22 PM

    even and odd numbers
    All the even and odd numbers between 1 and 100 are discussed here. What are the even numbers from 1 to 100? The even numbers from 1 to 100 are:

    Read More