Loading [MathJax]/jax/output/HTML-CSS/jax.js

Standard Equation of an Hyperbola

We will learn how to find the standard equation of a hyperbola.

Let S be the focus, e (> 1) be the eccentricity and line KZ its directrix of the hyperbola whose equation is required.

Standard Equation of an Hyperbola

From the point S draw SK perpendicular to the directrix KZ. The line segment SK and the produced SK divides internally at A and externally at A’ respectively in the ratio e : 1.

Then,

SAAK = e : 1      

⇒ SA = e  ∙ AK …………. (ii)

and  SAAK =  e : 1    

⇒ SA' = e  ∙ A'K …………………. (ii)

The points A and A' he on the required hyperbola because according to the definition of hyperbola A and A’are such points that their distance from the focus bear constant ratio e (>1) to their respective distance from the directrix, therefore A and A' he on the required hyperbola.

Let AA’ = 2a and C be the mid-point of the line segment AA'. Therefore, CA = CA' = a.

Now draw CY perpendicular to AA’ and mark the origin at C. CX and CY are assumed as x and y-axes respectively.

Now, adding the above two equations (i) and (ii) we have,

SA + SA' = e (AK + A'K)

⇒ CS - CA + CS + CA' =  e (AC - CK + A’C + CK)

⇒ CS - CA + CS + CA' =  e (AC - CK + A’C + CK)

Now put the value of CA = CA' = a.

⇒ CS - a + CS + a = e (a - CK + a + CK)

⇒2CS = e (2a)

⇒ 2CS = 2ae

⇒ CS = ae …………………… (iii)

Now, again subtracting above two equations (i) from (ii) we have,

⇒ SA' - SA = e (A'K - AK)

⇒ AA'= e {(CA’ + CK) - (CA - CK)}

⇒ AA' = e (CA’ + CK - CA + CK)

Now put the value of CA = CA' = a.

⇒ AA' = e (a + CK - a + CK)

⇒ 2a = e (2CK)

⇒ 2a = 2e (CK)

⇒ a = e (CK)

⇒ CK = ae ………………. (iv)

Let P (x, y) be any point on the required hyperbola and from P draw PM and PN perpendicular to KZ and KX respectively. Now join SP.

According to the graph, CN = x and PN = y.

Now form the definition of hyperbola we get,

SP = e PM

⇒ Sp2= e2PM2

⇒ SP2 = e2KN2

⇒ SP2 = e2(CN - CK)2

⇒ (x - ae)2 + y2 = e2(x - ae)2, [From (iii) and (iv)]

⇒ x2 - 2aex + (ae)2 + y2 = (ex - a)2

⇒ (ex)2 - 2aex + a2 = x2 - 2aex + (ae)2 + y2

⇒ (ex)2  - x2 - y2 = (ae)2 - a2

⇒ x2(e2 - 1) - y2 = a2(e2 - 1)

x2a2 - y2a2(e21) = 1

We know that a2(e2 - 1) = b2

Therefore, x2a2 - y2b2 = 1

For all the points P (x, y) the relation x2a2 - y2b2 = 1 satisfies on the required hyperbola.

Therefore, the equation x2a2 - y2b2 = 1 represents the equation of the hyperbola.

The equation of a hyperbola in the form of x2a2 - y2b2 = 1 is known as the standard equation of the hyperbola.

The Hyperbola





11 and 12 Grade Math 

From Standard Equation of an Hyperbola to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Area of a Square and Rectangle | Area of Squares & Rectan

    Jul 19, 25 05:00 AM

    Area and Perimeter of Square and Rectangle
    We will practice the questions given in the worksheet on area of a square and rectangle. We know the amount of surface that a plane figure covers is called its area. 1. Find the area of the square len…

    Read More

  2. Area of Rectangle Square and Triangle | Formulas| Area of Plane Shapes

    Jul 18, 25 10:38 AM

    Area of a Square of Side 1 cm
    Area of a closed plane figure is the amount of surface enclosed within its boundary. Look at the given figures. The shaded region of each figure denotes its area. The standard unit, generally used for…

    Read More

  3. What is Area in Maths? | Units to find Area | Conversion Table of Area

    Jul 17, 25 01:06 AM

    Concept of Area
    The amount of surface that a plane figure covers is called its area. It’s unit is square centimeters or square meters etc. A rectangle, a square, a triangle and a circle are all examples of closed pla…

    Read More

  4. Worksheet on Perimeter | Perimeter of Squares and Rectangle | Answers

    Jul 17, 25 12:40 AM

    Most and Least Perimeter
    Practice the questions given in the worksheet on perimeter. The questions are based on finding the perimeter of the triangle, perimeter of the square, perimeter of rectangle and word problems. I. Find…

    Read More

  5. Formation of Square and Rectangle | Construction of Square & Rectangle

    Jul 16, 25 11:46 PM

    Construction of a Square
    In formation of square and rectangle we will learn how to construct square and rectangle. Construction of a Square: We follow the method given below. Step I: We draw a line segment AB of the required…

    Read More