Rectangular Hyperbola

What is rectangular hyperbola?

When the transverse axis of a hyperbola is equal to its conjugate axis then the hyperbola is called a rectangular or equilateral hyperbola.

The standard equation of the hyperbola \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1 ………… (i)

The transverse axis of the hyperbola (i) is along x-axis and its length = 2a.

The conjugate axis of the hyperbola (i) is along y-axis and its length = 2b.

According to the definition of rectangular hyperbola we get, a = b

Therefore, substitute a = b in the standard equation of the hyperbola (i) we get,

\(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1 

⇒ \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{a^{2}}\) = 1  

⇒ x\(^{2}\) - y\(^{2}\) = a\(^{2}\), which is the equation of the rectangular hyperbola.

1. Show that the eccentricity of any rectangular hyperbola is √2

Solution:

The eccentricity of the standard equation of the hyperbola \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1 is b\(^{2}\) = a\(^{2}\)(e\(^{2}\) - 1).

Again, according to the definition of rectangular hyperbola we get, a = b

Therefore, substitute a = b in the eccentricity of the standard equation of the hyperbola (i) we get,

a\(^{2}\) = a\(^{2}\)(e\(^{2}\) - 1)           

⇒ e\(^{2}\) - 1 = 1      

⇒ e\(^{2}\) = 2      

⇒ e = √2   

Thus, the eccentricity of a rectangular hyperbola is √2.


2. Find the eccentricity, the co-ordinates of foci and the length of semi-latus rectum of the rectangular hyperbola x\(^{2}\) - y\(^{2}\) - 25 = 0.

Solution:

Given rectangular hyperbola x\(^{2}\) - y\(^{2}\) - 25 = 0

From the rectangular hyperbola x\(^{2}\) - y\(^{2}\) - 25 = 0 we get,

x\(^{2}\) - y\(^{2}\) = 25

⇒ x\(^{2}\) - y\(^{2}\) = 5\(^{2}\)

⇒ \(\frac{x^{2}}{5^{2}}\) - \(\frac{y^{2}}{5^{2}}\) = 1 

The eccentricity of the hyperbola is

e = \(\sqrt{1 + \frac{b^{2}}{a^{2}}}\)

= \(\sqrt{1 + \frac{5^{2}}{5^{2}}}\), [Since, a = 5 and b = 5]

= √2

The co-ordinates of its foci are (± ae, 0) = (± 5√2, 0).

The length of semi-latus rectum = \(\frac{b^{2}}{a}\) = \(\frac{5^{2}}{5}\) = 25/5 = 5.


3. What type of conic is represented by the equation x\(^{2}\) - y\(^{2}\) = 9? What is its eccentricity?

Solution:

The given equation of the conic x\(^{2}\) - y\(^{2}\) = 9

⇒ x\(^{2}\) - y\(^{2}\) = 3\(^{2}\), which is the equation of the rectangular hyperbola.

A hyperbola whose transverse axis is equal to its conjugate axis is called a rectangular or equilateral hyperbola.

The eccentricity of a rectangular hyperbola is √2.

The Hyperbola






11 and 12 Grade Math

From Rectangular Hyperbola to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. BODMAS Rule | Order of Operation | Definition, Examples, Problems

    Mar 27, 25 03:02 AM

    Easy and simple way to remember BODMAS rule!! B → Brackets first (parentheses) O → Of (orders i.e. Powers and Square Roots, Cube Roots, etc.) DM → Division and Multiplication

    Read More

  2. 5th Grade Math Worksheets | 5th Grade Homework Sheets | Math Worksheet

    Mar 27, 25 02:46 AM

    5th grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students. Teachers and parents can also follow the worksheets to guide the students.

    Read More

  3. 5th Grade Relation Between HCF and LCM | Solved Examples | Worksheet

    Mar 27, 25 02:34 AM

    Here we will discuss about the relationship between hcf and lcm of two numbers. Product of two numbers = Product of H.C.F. and L.C.M. of the numbers. Solved Examples on 5th Grade Relation Between HCF…

    Read More

  4. 5th Grade Word Problems on H.C.F. and L.C.M. | Worksheet with Answers

    Mar 27, 25 02:33 AM

    L.C.M. of 8, 24 and 32 by Long Division Method
    Here we will solve different types of word Problems on H.C.F. and L.C.M. Find the smallest number which when divided by 8, 24 and 32 when leaves 7 as remainder in each. 1. Find the lowest number which…

    Read More

  5. Divisible by 3 | Test of Divisibility by 3 |Rules of Divisibility by 3

    Mar 26, 25 11:08 AM

    Divisible by 3
    A number is divisible by 3, if the sum of its all digits is a multiple of 3 or divisibility by 3. Consider the following numbers to find whether the numbers are divisible or not divisible by 3: (i) 54…

    Read More