Parametric Equation of the Hyperbola

We will learn in the simplest way how to find the parametric equations of the hyperbola.

The circle described on the transverse axis of a hyperbola as diameter is called its Auxiliary Circle.

If \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1 is a hyperbola, then its auxiliary circle is x\(^{2}\) + y\(^{2}\) = a\(^{2}\).

Let the equation of the hyperbola be, \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1  

Parametric Equation of the Hyperbola

The transverse axis of the hyperbola \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1 is AA’ and its length = 2a. Clearly, the equation of the circle described on AA’ as diameter is x\(^{2}\) + y\(^{2}\) = a\(^{2}\) (since the centre of the circle is the centre C (0, 0) of the hyperbola).

Therefore, the equation of the auxiliary circle of the hyperbola \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1 is, x\(^{2}\) + y\(^{2}\) = a\(^{2}\)

Let P (x, y) be any point on the equation of the hyperbola be \(\frac{x^{2}}{a^{2}}\) -\(\frac{y^{2}}{b^{2}}\) = 1

Now from P draw PM perpendicular to the transverse axis of the hyperbola. Again take a point Q on the auxiliary circle x\(^{2}\) + y\(^{2}\) = a\(^{2}\) such that ∠CQM = 90°.

Join the point C and Q. The length of QC = a. Again, let ∠MCQ = θ. The angle ∠MCQ = θ is called the eccentric angle of the point P on the hyperbola.

Now from the right-angled  ∆CQM we get,

\(\frac{CQ}{MC}\) = cos θ          

or, a/MC  =   a/sec θ       

or, MC  = a sec θ

Therefore, the abscissa of P = MC = x = a sec θ

Since the point P (x, y) lies on the hyperbola \(\frac{x^{2}}{a^{2}}\) -\(\frac{y^{2}}{b^{2}}\) = 1 hence,

\(\frac{a^{2}sec^{2} θ }{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1, (Since, x = a sec θ)

\(\frac{y^{2}}{b^{2}}\) = sec\(^{2}\) θ – 1

\(\frac{y^{2}}{b^{2}}\) = tan\(^{2}\) θ

y\(^{2}\) = b\(^{2}\) tan\(^{2}\) θ

y = b tan θ

Hence, the co-ordinates of P are (a sec θ, b tan θ).

Therefore, for all values of θ the point P (a sec θ, b tan θ) always lies on the hyperbola \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\)  = 1  

Thus, the co-ordinates of the point having eccentric angle θ can be written as (a sec θ, b tan θ). Here (a sec θ, b tan θ) are known as the parametric co-ordinates of the point P.

The equations x = a sec θ, y = b tan θ taken together are called the parametric equations of the hyperbola \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1; where θ is parameter (θ is called the eccentric angle of the point P).


Solved example to find the parametric equations of a hyperbola:

1. Find the parametric co-ordinates of the point (8, 3√3) on the hyperbola 9x\(^{2}\) - 16y\(^{2}\) = 144.

Solution:     

The given equation of the hyperbola is 9x2 - 16y2 = 144

⇒ \(\frac{x^{2}}{16}\) - \(\frac{y^{2}}{9}\) = 1

⇒ \(\frac{x^{2}}{4^{2}}\) - \(\frac{y^{2}}{3^{2}}\) = 1, which is the form of \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\) = 1.  

Therefore,

a\(^{2}\) = 4\(^{2}\) 

⇒ a = 4 and   

b\(^{2}\) = 3\(^{2}\)     

⇒ b = 3.

Therefore, we can take the parametric co-ordinates of the point (8, 3√3) as (4 sec θ, 3 tan θ).

Thus we have, 4 sec θ = 8      

⇒ sec θ = 2        

⇒ θ = 60°

We know that for all values of θ the point (a sec θ, b tan θ) always lies on the hyperbola \(\frac{x^{2}}{a^{2}}\) - \(\frac{y^{2}}{b^{2}}\)  = 1  

Therefore, (a sec θ, b tan θ) are known as the parametric co-ordinates of the point.

Therefore, the parametric co-ordinates of the point (8, 3√3)   are (4 sec 60°, 3 tan 60°).

 

2. P (a sec θ, a tan θ) is a variable point on the hyperbola x\(^{2}\) - y\(^{2}\) = a\(^{2}\), and M (2a, 0) is a fixed point. Prove that the locus of the middle point of AP is a rectangular hyperbola.

Solution:        

Let (h, k) be the middle point of the line segment AM.

Therefore, h = \(\frac{a sec θ + 2a}{2}\)   

⇒ a sec θ = 2(h - a)

(a sec θ)\(^{2}\) = [2(h - a)]\(^{2}\) …………………. (i)

and k = \(\frac{a tan θ}{2}\)

⇒ a tan θ = 2k

(a tan θ)\(^{2}\) = (2k)\(^{2}\) …………………. (ii)

Now form (i) - (ii), we get,

(a sec θ)\(^{2}\) - (a tan θ)\(^{2}\) = [2(h - a)]\(^{2}\) - (2k)\(^{2}\)

⇒ a\(^{2}\)(sec\(^{2}\) θ - tan\(^{2}\) θ) = 4(h - a)\(^{2}\) - 4k\(^{2}\)

⇒ (h - a)\(^{2}\) - k\(^{2}\) = \(\frac{a^{2}}{4}\).

Therefore, the equation to the locus of (h, k) is (x - a)\(^{2}\) - y\(^{2}\) = \(\frac{a^{2}}{4}\), which is the equation of a rectangular hyperbola.

The Hyperbola





11 and 12 Grade Math 

From Parametric Equation of the Hyperbola to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Apr 16, 24 02:19 AM

    Duration of Time
    We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton every evening. Yesterday, their game started at 5 : 15 p.m.

    Read More

  2. Worksheet on Third Grade Geometrical Shapes | Questions on Geometry

    Apr 16, 24 02:00 AM

    Worksheet on Geometrical Shapes
    Practice the math worksheet on third grade geometrical shapes. The questions will help the students to get prepared for the third grade geometry test. 1. Name the types of surfaces that you know. 2. W…

    Read More

  3. 4th Grade Mental Math on Factors and Multiples |Worksheet with Answers

    Apr 16, 24 01:15 AM

    In 4th grade mental math on factors and multiples students can practice different questions on prime numbers, properties of prime numbers, factors, properties of factors, even numbers, odd numbers, pr…

    Read More

  4. Worksheet on Factors and Multiples | Find the Missing Factors | Answer

    Apr 15, 24 11:30 PM

    Worksheet on Factors and Multiples
    Practice the questions given in the worksheet on factors and multiples. 1. Find out the even numbers. 27, 36, 48, 125, 360, 453, 518, 423, 54, 58, 917, 186, 423, 928, 358 2. Find out the odd numbers.

    Read More

  5. Method of L.C.M. | Finding L.C.M. | Smallest Common Multiple | Common

    Apr 15, 24 02:33 PM

    LCM of 24 and 30
    We will discuss here about the method of l.c.m. (least common multiple). Let us consider the numbers 8, 12 and 16. Multiples of 8 are → 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, ......

    Read More