Loading [MathJax]/jax/output/HTML-CSS/jax.js

Dividing Fractions

We will discuss here about dividing fractions by a whole number, by a fractional number or by another mixed fractional number.


First let us recall how to find reciprocal of a fraction, we interchange the numerator and the denominator.

For example, the reciprocal of ¾ is 4/3.

Division of Fractions

Find the reciprocal of 3 ¾

The reciprocal of 3 ¾ is 4/15.

Division of Fractions Reciprocal

I. Division of a Fraction by a Whole Number:

4 ÷ 2 = 2 means, there are two 2’s in 4.

6 ÷ 2 = 3 means, there are two 2’s in 6.

Similarly 5 ÷ 12 means, how many halves are there in 5?

We know that 12 + 12 = 1

12 + 12   +

12 + 12   +

12 + 12   +

12 + 12   +

12 + 12

    1      + 

    1      + 

    1      + 

    1      + 

    1 

=   5

i.e. there are 10 halves in 5.

5 ÷ 12 = 5 × 21 = 101 = 10


For Example:

1. 710 ÷ 5 = 710 ÷ 51

= 710 × 15

= 7×110×5

= 750


2. What is 1015 ÷ 5?

1015 ÷ 51

= 1015 × 15

= 2×5×13×5×5

= 215

Prime Factors of 10, 5 and 3

              10 = 2 × 5

              15 = 3 × 5

                5 = 1 × 5


To divide a fraction by a number, multiply the fraction with the reciprocal of the number.

For example:

3. Divide 3/5 by 12

Solution:

3/5 ÷ 12

= 3/5 ÷ 12/1

= 3/5 × 1/12

= (3 × 1)/(5 × 12)

= 3/60

= 1/20


Step I: Find the reciprocal of the whole number and multiply with the fractional number as usual.

Step II: Express the product in its lowest terms.


4. Solve: 5/7 ÷ 10

= 5/7 ÷ 10/1

= 5/7 × 1/10

= (5 × 1)/(7 × 10)

= 5/70

Step I: Find the reciprocal of the whole number and multiply with the fractional number as usual.

Step II: Express the product in its lowest terms.


II. Division of a Fractional Number by a Fractional Number:

For example:

1. Divide 7/8 by 1/5

Solution:

7/8 ÷ 1/5

= 7/8 × 5/1

= (7 × 5)/(8 × 1)

= 35/8

= 4 3/8


Step I: Find reciprocal of 1/5.

Step II: Multiply 7/8 by it.

Step III: Express the product in its simplest form.


2. Divide: 5/9 ÷ 10/18

Solution:

5/9 ÷ 10/18

= 5/9 × 18/10

= (5 × 18)/(9 × 10)

= 90/90

= 1


Step I: Find reciprocal of 1/5.

Step II: Multiply 7/8 by it.

Step III: Express the product in its simplest form.

Division of a Fraction by a Fraction:

3. Divide 34 ÷ 53

Step I: Multiply the first fraction with the reciprocal of the second fraction.

Reciprocal of 53 = 35

Therefore, 34 ÷ 53  = 34 × 35

                           = 3×34×5

                           = 920

Step II: Reduce the fraction to the lowest terms. (if necessary)

4. Divide 1627 ÷ 49

Therefore, 1627 ÷ 49 = 1627 × 94; [Reciprocal of 49 = 94]

                            = 2×2×2×2×3×33×3×3×2×2

                            = 43

                            = 113

Prime Factors of 16, 27, 9 and 4

            16 = 2 × 2 × 2 × 2

            9 = 3 × 3

            27 = 3 × 3 × 3

            4 = 2 × 2


III. Division of a Mixed Number by another Mixed Number:

For example:

1. Divide 2 ¾ by 1 2/3

Solution:

2 ¾ ÷ 1 2/3

= 11/4 ÷ 5/3

= 11/4 × 3/5

= (11 × 3)/(4 × 5)

= 33/20

= 1 13/20


Express the mixed numbers as improper fractions and multiply as usual.


2. Divide: 2  4/17 ÷ 1  4/17

Solution:

2  4/17 ÷ 1  4/17

= 38/17 ÷ 21/17

= 38/17 × 17/21

= (38 × 17)/(17 × 21)

= 646/357

= 38/21

= 1 17/21


Express the mixed numbers as improper fractions and multiply as usual.


Questions and Answers on Dividing Fractions:

I. Divide the following.

(i) 26 ÷ 13

(ii) 58 ÷ 1516

(iii) 56 ÷ 15

(iv) 78 ÷ 14

(v) 23 ÷ 6

(vi) 28 ÷ 74

(vii) 256 ÷ 34

(viii) 912 ÷ 382

(ix) 314 ÷ 2628

(x) 713 ÷ 156

(xi) 235 ÷ 11115

(xii) 112 ÷ 47

Related Concept

Fraction of a Whole Numbers

Representation of a Fraction

Equivalent Fractions

Properties of Equivalent Fractions

Like and Unlike Fractions

Comparison of Like Fractions

Comparison of Fractions having the same Numerator

Types of Fractions

Changing Fractions

Conversion of Fractions into Fractions having Same Denominator

Conversion of a Fraction into its Smallest and Simplest Form

Addition of Fractions having the Same Denominator

Subtraction of Fractions having the Same Denominator

Addition and Subtraction of Fractions on the Fraction Number Line




4th Grade Math Activities

From Dividing Fractions to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Area, Perimeter and Volume | Square, Rectangle, Cube,Cubo

    Jul 28, 25 03:00 AM

    Volume of a Cuboids
    In this worksheet on area perimeter and volume you will get different types of questions on find the perimeter of a rectangle, find the perimeter of a square, find the area of a rectangle, find the ar…

    Read More

  2. Worksheet on Volume of a Cube and Cuboid |The Volume of a RectangleBox

    Jul 25, 25 03:15 AM

    Volume of a Cube and Cuboid
    We will practice the questions given in the worksheet on volume of a cube and cuboid. We know the volume of an object is the amount of space occupied by the object.1. Fill in the blanks:

    Read More

  3. Volume of a Cuboid | Volume of Cuboid Formula | How to Find the Volume

    Jul 24, 25 03:46 PM

    Volume of Cuboid
    Cuboid is a solid box whose every surface is a rectangle of same area or different areas. A cuboid will have a length, breadth and height. Hence we can conclude that volume is 3 dimensional. To measur…

    Read More

  4. Volume of a Cube | How to Calculate the Volume of a Cube? | Examples

    Jul 23, 25 11:37 AM

    Volume of a Cube
    A cube is a solid box whose every surface is a square of same area. Take an empty box with open top in the shape of a cube whose each edge is 2 cm. Now fit cubes of edges 1 cm in it. From the figure i…

    Read More

  5. 5th Grade Volume | Units of Volume | Measurement of Volume|Cubic Units

    Jul 20, 25 10:22 AM

    Cubes in Cuboid
    Volume is the amount of space enclosed by an object or shape, how much 3-dimensional space (length, height, and width) it occupies. A flat shape like triangle, square and rectangle occupies surface on…

    Read More