Condition of Collinearity of Three Points

Here we will learn about condition of collinearity of three points.

How to find the condition of collinearity of three given points?

First Method:

Let us assume that the three non-coincident points A (x₁, y₁), B (x₂, y₂) and C (x₃, y₃) are collinear. Then, one of these three points will divide the line segment joining the other two internally in a definite ratio. Suppose, the point B divides the line segment  AC  internally in the ratio λ : 1. 

Hence, we have, 

(λx₃ + 1 ∙ x₁)/(λ + 1) = x₂ …..(1) 

and (λy₃ + 1 ∙ y₁)/(λ+1) = y₂ ..…(2) 

From (1) we get, 

λx₂ + x₂ = λx₃ + x₁

or, λ (x₂ - x₃) = x₁ - x₂

or, λ = (x₁ - x₂)/(x₂ - x₃)

Similarly, from (2) we get, λ = (y₁ - y₂)/(y₂ - y₃)

Therefore, (x₁ - x₂)/(x₂ - x₃) = (y₁ -y₂)/(y₂ - y₃)

or, (x₁ - x ₂)(y₂ - y₃) = (y₁ - y₂) (x₂ - x₃ )

or, x₁ (y₂ - y₃) + x₂ y₃ - y₁) + x₃ (y₁ - y₂) = 0

which is the required condition of collinearity of-the three given points.


Second Method: 

Let A (x₁, y₁), B (x₂, y₂) and C (x₃, y₃)be three non-coincident points and they are collinear. Since area of a triangle = ½ ∙ base × altitude, hence it is evident that the altitude of the triangle ABC is zero, when the points A, B, and C are collinear. Thus, the area of the triangle is zero if the points A, B and Care collinear. Therefore, the required condition of collinearity is

1/2 [x₁ (y₂ - y₃) + x₂(y₃ - y₁) + x₃ (y₁ - y₂)] = 0

or, x₁ (y₂ - y₃) + x₂ (y₃ - y₁) + x₃ (y₁ - y₂) = 0.

Examples on Condition of Collinearity of Three Points: 

1. Show that the points (0, -2) , (2, 4) and (-1, -5) are collinear. 


Solution:

The area of the triangle formed by joining the given points

= 1/2 [(0 - 10 + 2) - (-4 -4 + 0)] = 1/2 (-8 + 8) = 0.

Since the area of the triangle formed by joining the given points is zero, hence the given points are collinear. Proved



2. Show that the straight line joining the points (4, -3) and (-8, 6) passes through the origin.

Solution:

The area of the triangle formed by joining the points (4, -3), (-8, 6) and (0, 0) is 1/2 [24 - 24] = 0.

Since the area of the triangle formed by joining the points (4, -3), (-8, 6) and (0, 0) is zero, hence the three points are collinear : therefore, the straight line joining the points (4, -3) and (-8, 6)passes through the origin.


3. Find the condition that the points (a, b), (b, a) and (a², – b²) are in a straight line.

Solution:

Since the three given points are in a straight line, hence the area of the triangle formed by the points must be zero.

Therefore, 1/2 | (a² - b³ + a²b) – (b² + a³ - ab²) | = 0

or, a² - b³ + a²b – b² – a³ + ab² = 0

or, a² – b² – (a³ + b³) + ab (a + b) = 0

or, (a + b) [a - b - (a² - ab + b²) + ab] = 0

or, (a + b) [(a - b)- (a² - ab + b² - ab)] = 0

or, (a + b) [(a - b) - (a - b)²] = 0

or, (a + b) (a - b) (1 - a + b) = 0

Therefore, either a + b = 0 or, a – b = 0 or, 1 - a + b = 0.

 Co-ordinate Geometry 



11 and 12 Grade Math

Form Condition of Collinearity of Three Points to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Area, Perimeter and Volume | Square, Rectangle, Cube,Cubo

    Jul 25, 25 12:21 PM

    In this worksheet on area perimeter and volume you will get different types of questions on find the perimeter of a rectangle, find the perimeter of a square, find the area of a rectangle, find the ar…

    Read More

  2. Worksheet on Volume of a Cube and Cuboid |The Volume of a RectangleBox

    Jul 25, 25 03:15 AM

    Volume of a Cube and Cuboid
    We will practice the questions given in the worksheet on volume of a cube and cuboid. We know the volume of an object is the amount of space occupied by the object.1. Fill in the blanks:

    Read More

  3. Volume of a Cuboid | Volume of Cuboid Formula | How to Find the Volume

    Jul 24, 25 03:46 PM

    Volume of Cuboid
    Cuboid is a solid box whose every surface is a rectangle of same area or different areas. A cuboid will have a length, breadth and height. Hence we can conclude that volume is 3 dimensional. To measur…

    Read More

  4. Volume of a Cube | How to Calculate the Volume of a Cube? | Examples

    Jul 23, 25 11:37 AM

    Volume of a Cube
    A cube is a solid box whose every surface is a square of same area. Take an empty box with open top in the shape of a cube whose each edge is 2 cm. Now fit cubes of edges 1 cm in it. From the figure i…

    Read More

  5. 5th Grade Volume | Units of Volume | Measurement of Volume|Cubic Units

    Jul 20, 25 10:22 AM

    Cubes in Cuboid
    Volume is the amount of space enclosed by an object or shape, how much 3-dimensional space (length, height, and width) it occupies. A flat shape like triangle, square and rectangle occupies surface on…

    Read More