Circle Through the Intersection of Two Circles

We will learn how to find the equation of a circle through the intersection of two given circles.

The equation of a family of circles passing through the intersection of the circles P\(_{1}\) = x\(^{2}\) + y\(^{2}\) + 2g\(_{1}\)x + 2f\(_{1}\)y + c\(_{1}\) = 0 and P\(_{2}\) = x\(^{2}\) + y\(^{2}\) + 2g\(_{2}\)x + 2f\(_{2}\)y + c\(_{2}\) = 0 is P\(_{1}\) + λP\(_{2}\) = 0 i.e., (x\(^{2}\) + y\(^{2}\) + 2gx\(_{1}\) + 2fy\(_{1}\) + c\(_{1}\)) + λ(x\(^{2}\) + y\(^{2}\) + 2g\(_{2}\)x + 2f\(_{2}\)y + c\(_{2}\)) = 0, where λ (≠ -1) in an arbitrary real number.

Proof:

Let the equations of the given circles be 

P\(_{1}\) = x\(^{2}\) + y\(^{2}\) + 2g\(_{1}\)x + 2f\(_{1}\)y + c\(_{1}\) = 0 ………………………..(i) and

P\(_{2}\) = x\(^{2}\) + y\(^{2}\) + 2g\(_{2}\)x + 2f\(_{2}\)y + c\(_{2}\) ………………………..(ii)

Circle Through the Intersection of Two CirclesCircle Through the Intersection of Two Circles

Consider the equation P\(_{1}\) + λP\(_{2}\) = 0 i.e., the equation of any curve through the points of intersection of the circles (1) and (2) is

(x\(^{2}\) + y\(^{2}\) + 2g\(_{1}\)x + 2f\(_{1}\)y + c\(_{1}\)) + λ(x\(^{2}\) + y\(^{2}\) + 2g\(_{2}\)x + 2f\(_{2}\)y + c\(_{2}\)) = 0 ………………………..(iii)

Clearly, it represents a circle for all values of λ except λ = -1. For λ = -1 (iii) becomes a first degree equation in x, y which represents a line. In order to prove that it passes through the points of intersection of the two given circles, it is sufficient to show that their points of intersection satisfy (iii).

Let (x\(_{1}\), y\(_{1}\)) be a point of intersection of the given circles.

Then,
\(\mathrm{x_{1}^{2} + y_{1}^{2} + 2g_{1}x_{1} + 2f_{1}y_{1} + c_{1}}\) and \(\mathrm{x_{1}^{2} + y_{1}^{2} + 2g_{2}x_{1} + 2f_{2}y_{1} + c_{2}}\)

⇒ (\(\mathrm{x_{1}^{2} + y_{1}^{2} + 2g_{1}x_{1} + 2f_{1}y_{1} + c_{1}}\)) +  λ(\(\mathrm{x_{1}^{2} + y_{1}^{2} + 2g_{2}x_{1} + 2f_{2}y_{1} + c_{2}}\)) = 0 + λ0 = 0

⇒ (x\(_{1}\), y\(_{1}\)) lies on (iii).

Similarly, it can be proved that the second point of intersection of the given circles also satisfy (i)

Hence, (iii) gives the family of circles passing through the intersection of the given circles.

In other words, the equation of any curve through the points of intersection of the circles (i) and (ii) is
(x\(^{2}\) + y\(^{2}\) + 2g\(_{1}\)x + 2f\(_{1}\)y + c\(_{1}\)) + λ(x\(^{2}\) + y\(^{2}\) + 2g\(_{2}\)x + 2f\(_{2}\)y + c\(_{2}\))………………………..(iv)

⇒ (1 + λ)(x\(^{2}\) + y\(^{2}\)) + 2(g\(_{1}\) + g\(_{2}\)λ)x + 2(f\(_{1}\) + f\(_{2}\)λ)y + c\(_{1}\) + λc\(_{2}\) = 0

⇒ x\(^{2}\) + y\(^{2}\) + 2 ∙ \(\mathrm{\frac{g_{1} + g_{2}λ}{1 + λ}}\) x + 2 ∙ \(\mathrm{\frac{f_{1} + f_{2}λ}{1 + λ}}\)y + \(\mathrm{\frac{c_{1} + c_{2}λ}{1 + λ}}\) = 0 ………………………..(v)   

If λ ≠ - 1, then equation (v) will represent the equation of a circle. Therefore, the equation (iv) represents the family of circles through the points of intersection of the circles (1) and (2). 


Solved examples to find the equations of a circle through the points of intersection of two given circles: 

1. Find the equation of the circle through the intersection of the circles x\(^{2}\) + y\(^{2}\) - 8x - 2y + 7 = 0 and x\(^{2}\) + y\(^{2}\) - 4x + 10y + 8 = 0 and passes through the point (-1, -2).

Solution:

The equation of any circles passing through the intersection of the circles S\(_{1}\) = x\(^{2}\) + y\(^{2}\) - 8x - 2y + 7 = 0 and S\(_{2}\) = x\(^{2}\) + y\(^{2}\) - 4x + 10y + 8 = 0 is S\(_{1}\) + λS\(_{2}\) = 0 

Therefore, the equation of the required circle is (x\(^{2}\) + y\(^{2}\) - 8x - 2y + 7) + λ(x\(^{2}\) + y\(^{2}\) - 4x + 10y + 8) = 0, where λ (≠ -1) in an arbitrary real number

This circle passes through the point (-1, -2), therefore, 
 (1 + λ) + 4(1 + λ) + 4(2 + λ) + 4(1 - 5λ) + 7 + 8λ = 0

⇒ 24 - 3λ = 0

⇒ λ = 8

Now putting the value of λ = 8 in the equation (x\(^{2}\) + y\(^{2}\) - 8x - 2y + 7) + λ(x\(^{2}\) + y\(^{2}\) - 4x + 10y + 8) = 0 we get the required equation as 9x\(^{2}\) + 9y\(^{2}\) – 40x + 78y + 71 = 0.


2. Find the equation of the circle through the intersection of the circles x\(^{2}\) + y\(^{2}\) - x + 7y - 3 = 0 and x\(^{2}\) + y\(^{2}\) - 5x - y + 1 = 0, having its centre on the line x + y = 0. 

Solution:

x\(^{2}\) + y\(^{2}\) - x + 7y - 3 + λ(x\(^{2}\) + y\(^{2}\) - 5x - y + 1) = 0, (λ ≠1)

⇒(1 + λ) (x\(^{2}\) + y\(^{2}\)) - (1 +  5λ)x + (7 - λ)y - 3 + λ = 0

⇒ x\(^{2}\) + y\(^{2}\) - \(\frac{1 + 5λ}{1 + λ}\)x - \(\frac{λ - 7}{1 + λ}\)y + \(\frac{λ - 3}{1 + λ}\) = 0 …………….(i)

Clearly, the co-ordinates of the centre of the circle (i) are [\(\frac{1 + 5λ}{2(1 + λ)}\), \(\frac{λ - 7}{2(1 + λ)}\)] By question, this point lies on the line x + y = 0. 

Therefore, \(\frac{1 + 5λ}{2(1 + λ)}\) + \(\frac{λ - 7}{2(1 + λ)}\) = 0 

⇒1 + 5λ + λ - 7 = 0 

⇒ 6λ =  6

⇒ λ = 1

Therefore, the equation of the required circle is 2(x\(^{2}\) + y\(^{2}\)) - 6x + 6y - 2 = 0, [putting λ = 1 in (1)] 

⇒ x\(^{2}\) + y\(^{2}\) - 3x + 3y - 1 = 0. 

 The Circle




11 and 12 Grade Math 

From Circle through the Intersection of Two Circles to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Adding 1-Digit Number | Understand the Concept one Digit Number

    Apr 26, 24 01:55 PM

    Add by Counting Forward
    Understand the concept of adding 1-digit number with the help of objects as well as numbers.

    Read More

  2. Subtracting 2-Digit Numbers | How to Subtract Two Digit Numbers?

    Apr 26, 24 12:36 PM

    Subtracting 2-Digit Numbers
    In subtracting 2-digit numbers we will subtract or minus a two-digit number from another two-digit number. To find the difference between the two numbers we need to ‘ones from ones’ and ‘tens from

    Read More

  3. 1st Grade Word Problems on Subtraction | Subtracting 2-Digit Numbers

    Apr 26, 24 12:06 PM

    1st Grade Word Problems on Subtraction
    In 1st grade word problems on subtraction students can practice the questions on word problems based on subtraction. This exercise sheet on subtraction can be practiced by the students to get more ide…

    Read More

  4. Subtracting 1-Digit Number | Subtract or Minus Two One-Digit Number

    Apr 26, 24 11:21 AM

    Cross Out 6 Objects
    In subtracting 1-digit number we will subtract or minus one-digit number from one-digit number or one-digit number from 2-digit number and find the difference between them. We know that subtraction me…

    Read More

  5. Perimeter of a Square | How to Find the Perimeter of Square? |Examples

    Apr 25, 24 05:34 PM

    Perimeter of a Square
    We will discuss here how to find the perimeter of a square. Perimeter of a square is the total length (distance) of the boundary of a square. We know that all the sides of a square are equal. Perimete…

    Read More