Subtraction of Rational Number with Different Denominator

We will learn the subtraction of rational number with different denominator. To find the difference of two rational numbers which do not have the same denominator, we follow the following steps:

Step I: Let us obtain the rational numbers and see whether their denominators are positive or not. If the denominator of one (or both) of the numerators is negative, re-arrange it so that the denominators become positive.

Step II: Obtain the denominators of the rational numbers in step I.

Step III: Find the lowest common multiple of the denominators of the two given rational numbers.

Step IV: Express both the rational numbers in step I so that the lowest common multiple of the denominators becomes their common denominator.

Step V: Write a rational number whose numerator is equal to the difference of the numerators of rational numbers obtained in step IV and denominators is the lowest common multiple obtained in step III.

Step VI: The rational number obtained in step V is the required difference (simplify if required).

Following examples will illustrate the above procedure.

1. Subtract 9 from 4/5

Solution:

We have, 9 = 9/1

Clearly, denominators of the two rational numbers are positive. We now re-write them so that they have a common denominator equal to the LCM of the denominators.

In this case the denominators are 1 and 5.

The LCM of 1 and 5 is 5.

We have, 9 = 9/1 = 9 × 5/1 × 5 = 45/5

Therefore, 4/5 - 9

            = 4/5 - 9/1

            = 4/5 - 45/5

            = (4 - 45)/5

            = -41/5

Therefore, 4/5 - 9 = -41/5


2. Find the difference of: -3/4 - 5/6

Solution:

The denominators of the given rational numbers are 4 and 6 respectively.

LCM of 4 and 6 = (2 × 2 × 3) = 12.

Now, -3/4 = (-3) × 3/4 × 3 = -9/12

and 5/6 = 5 × 2/6 × 2 = 10/12

Therefore, -3/4 - 5/6

          = -9/12 - 10/12

            = (-9 - 10)/12

            = -19/12

Therefore, -3/4 - 5/6 = -19/12

 

3. Simplify: 3/-15 - 7/-12

Solution:

First we write each of the given numbers with positive denominator.

3/-15 = 3 × (-1)/(-15) × (-1) = -3/15, [Multiplying the numerator and denominator by -1]

⇒ 3/-15 = -3/15

7/-12 = 7 × (-1)/(-12) ×  (-1) = -7/12, [Multiplying the numerator and denominator by -1]

⇒ 7/-12 = -7/12

Therefore, 3/-15 - 7/-12 = -3/15 - (-7)/12

Now, we find the LCM of 15 and 12.

The LCM of 15 and 12 = 60

Rewriting -3/15 in the form in which it has denominator 60, we get

-3/15 = -3 × 4/15 × 4 = -12/60

Rewriting -7/12 in the form in which it has denominator 60, we get

-7/12 = -7 × 5/12 × 5 = -35/60

Therefore, 3/-15 - 7/-12

            = -3/15 - (-7)/12

            = -12/60 - (-35)/60

            = (-12) - (-35)/60

            = -12 + 35/60

            = 23/60

Thus, 3/-15 - 7/-12 = 23/60.


4. Simplify: 11/-18 - 5/12

Solution:

First we write each one of the given rational numbers with positive denominator.

Clearly, denominator of 5/12 is positive.

The denominator of 11/-18 is negative.

The rational number 11/-18 with positive denominator is -11/18.

Therefore, 11/-18 - 5/12 = -11/18 - 5/12

The LCM of 18 and 12 is 36.

Rewriting -11/18 in forms having the same denominator 36, we get

-11/18 = (-11) × 2/18 × 2, [Multiplying the numerator and denominator by 2]

⇒ -11/18 = -22/36

Rewriting 5/12 in forms having the same denominator 66, we get

5/12 = 5 × 3/12 × 3, [Multiplying the numerator and denominator by 3]

⇒ 5/12 = 15/36

Therefore, 11/-18 - 5/12

           = -11/18 - 5/12

           = -22/36 - 15/36

           = -22 - 15/36

           = -37/36

Therefore, 11/-18 - 5/12 = -37/36


If a/b and c/d are two rational numbers such that b and d do not have a common factor other than 1, i.e., HCF of b and d is 1, then

a/b - c/d = a × d - c × b/b × d

For example, 5/18 - 3/13 = 5 × 13 - 3 × 18/18 × 13 = 65 - 54/234 = 11/234

and -2/11 - 3/14 = (-2) × 14 - (3 × 11)/11 × 14 = -28 - 33/154 = -61/154

Rational Numbers

Introduction of Rational Numbers

What is Rational Numbers?

Is Every Rational Number a Natural Number?

Is Zero a Rational Number?

Is Every Rational Number an Integer?

Is Every Rational Number a Fraction?

Positive Rational Number

Negative Rational Number

Equivalent Rational Numbers

Equivalent form of Rational Numbers

Rational Number in Different Forms

Properties of Rational Numbers

Lowest form of a Rational Number

Standard form of a Rational Number

Equality of Rational Numbers using Standard Form

Equality of Rational Numbers with Common Denominator

Equality of Rational Numbers using Cross Multiplication

Comparison of Rational Numbers

Rational Numbers in Ascending Order

Rational Numbers in Descending Order

Representation of Rational Numbers on the Number Line

Rational Numbers on the Number Line

Addition of Rational Number with Same Denominator

Addition of Rational Number with Different Denominator

Addition of Rational Numbers

Properties of Addition of Rational Numbers

Subtraction of Rational Number with Same Denominator

Subtraction of Rational Number with Different Denominator

Subtraction of Rational Numbers

Properties of Subtraction of Rational Numbers

Rational Expressions Involving Addition and Subtraction

Simplify Rational Expressions Involving the Sum or Difference

Multiplication of Rational Numbers

Product of Rational Numbers

Properties of Multiplication of Rational Numbers

Rational Expressions Involving Addition, Subtraction and Multiplication

Reciprocal of a Rational  Number

Division of Rational Numbers

Rational Expressions Involving Division

Properties of Division of Rational Numbers

Rational Numbers between Two Rational Numbers

To Find Rational Numbers





8th Grade Math Practice

From Subtraction of Rational Number with Different Denominator to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Quadrilaterals | Four Sided Polygon | Closed Figure | Adjoining Figure

    Jul 14, 25 02:55 AM

    Square
    Quadrilaterals are known as four sided polygon.What is a quadrilateral? A closed figure made of our line segments is called a quadrilateral. For example:

    Read More

  2. Formation of Numbers | Smallest and Greatest Number| Number Formation

    Jul 14, 25 01:53 AM

    In formation of numbers we will learn the numbers having different numbers of digits. We know that: (i) Greatest number of one digit = 9,

    Read More

  3. 5th Grade Geometry Practice Test | Angle | Triangle | Circle |Free Ans

    Jul 14, 25 01:53 AM

    Name the Angles
    In 5th grade geometry practice test you will get different types of practice questions on lines, types of angle, triangles, properties of triangles, classification of triangles, construction of triang…

    Read More

  4. 5th Grade Circle Worksheet | Free Worksheet with Answer |Practice Math

    Jul 11, 25 02:14 PM

    Radii of the circRadii, Chords, Diameters, Semi-circles
    In 5th Grade Circle Worksheet you will get different types of questions on parts of a circle, relation between radius and diameter, interior of a circle, exterior of a circle and construction of circl…

    Read More

  5. Construction of a Circle | Working Rules | Step-by-step Explanation |

    Jul 09, 25 01:29 AM

    Parts of a Circle
    Construction of a Circle when the length of its Radius is given. Working Rules | Step I: Open the compass such that its pointer be put on initial point (i.e. O) of ruler / scale and the pencil-end be…

    Read More

Rational Numbers - Worksheets

Worksheet on Rational Numbers

Worksheet on Equivalent Rational Numbers

Worksheet on Lowest form of a Rational Number

Worksheet on Standard form of a Rational Number

Worksheet on Equality of Rational Numbers

Worksheet on Comparison of Rational Numbers

Worksheet on Representation of Rational Number on a Number Line

Worksheet on Adding Rational Numbers

Worksheet on Properties of Addition of Rational Numbers

Worksheet on Subtracting Rational Numbers

Worksheet on Addition and Subtraction of Rational Number

Worksheet on Rational Expressions Involving Sum and Difference

Worksheet on Multiplication of Rational Number

Worksheet on Properties of Multiplication of Rational Numbers

Worksheet on Division of Rational Numbers

Worksheet on Properties of Division of Rational Numbers

Worksheet on Finding Rational Numbers between Two Rational Numbers

Worksheet on Word Problems on Rational Numbers

Worksheet on Operations on Rational Expressions

Objective Questions on Rational Numbers