Subtraction of Rational Number with Different Denominator

We will learn the subtraction of rational number with different denominator. To find the difference of two rational numbers which do not have the same denominator, we follow the following steps:

Step I: Let us obtain the rational numbers and see whether their denominators are positive or not. If the denominator of one (or both) of the numerators is negative, re-arrange it so that the denominators become positive.

Step II: Obtain the denominators of the rational numbers in step I.

Step III: Find the lowest common multiple of the denominators of the two given rational numbers.

Step IV: Express both the rational numbers in step I so that the lowest common multiple of the denominators becomes their common denominator.

Step V: Write a rational number whose numerator is equal to the difference of the numerators of rational numbers obtained in step IV and denominators is the lowest common multiple obtained in step III.

Step VI: The rational number obtained in step V is the required difference (simplify if required).

Following examples will illustrate the above procedure.

1. Subtract 9 from 4/5

Solution:

We have, 9 = 9/1

Clearly, denominators of the two rational numbers are positive. We now re-write them so that they have a common denominator equal to the LCM of the denominators.

In this case the denominators are 1 and 5.

The LCM of 1 and 5 is 5.

We have, 9 = 9/1 = 9 × 5/1 × 5 = 45/5

Therefore, 4/5 - 9

            = 4/5 - 9/1

            = 4/5 - 45/5

            = (4 - 45)/5

            = -41/5

Therefore, 4/5 - 9 = -41/5


2. Find the difference of: -3/4 - 5/6

Solution:

The denominators of the given rational numbers are 4 and 6 respectively.

LCM of 4 and 6 = (2 × 2 × 3) = 12.

Now, -3/4 = (-3) × 3/4 × 3 = -9/12

and 5/6 = 5 × 2/6 × 2 = 10/12

Therefore, -3/4 - 5/6

          = -9/12 - 10/12

            = (-9 - 10)/12

            = -19/12

Therefore, -3/4 - 5/6 = -19/12

 

3. Simplify: 3/-15 - 7/-12

Solution:

First we write each of the given numbers with positive denominator.

3/-15 = 3 × (-1)/(-15) × (-1) = -3/15, [Multiplying the numerator and denominator by -1]

⇒ 3/-15 = -3/15

7/-12 = 7 × (-1)/(-12) ×  (-1) = -7/12, [Multiplying the numerator and denominator by -1]

⇒ 7/-12 = -7/12

Therefore, 3/-15 - 7/-12 = -3/15 - (-7)/12

Now, we find the LCM of 15 and 12.

The LCM of 15 and 12 = 60

Rewriting -3/15 in the form in which it has denominator 60, we get

-3/15 = -3 × 4/15 × 4 = -12/60

Rewriting -7/12 in the form in which it has denominator 60, we get

-7/12 = -7 × 5/12 × 5 = -35/60

Therefore, 3/-15 - 7/-12

            = -3/15 - (-7)/12

            = -12/60 - (-35)/60

            = (-12) - (-35)/60

            = -12 + 35/60

            = 23/60

Thus, 3/-15 - 7/-12 = 23/60.


4. Simplify: 11/-18 - 5/12

Solution:

First we write each one of the given rational numbers with positive denominator.

Clearly, denominator of 5/12 is positive.

The denominator of 11/-18 is negative.

The rational number 11/-18 with positive denominator is -11/18.

Therefore, 11/-18 - 5/12 = -11/18 - 5/12

The LCM of 18 and 12 is 36.

Rewriting -11/18 in forms having the same denominator 36, we get

-11/18 = (-11) × 2/18 × 2, [Multiplying the numerator and denominator by 2]

⇒ -11/18 = -22/36

Rewriting 5/12 in forms having the same denominator 66, we get

5/12 = 5 × 3/12 × 3, [Multiplying the numerator and denominator by 3]

⇒ 5/12 = 15/36

Therefore, 11/-18 - 5/12

           = -11/18 - 5/12

           = -22/36 - 15/36

           = -22 - 15/36

           = -37/36

Therefore, 11/-18 - 5/12 = -37/36


If a/b and c/d are two rational numbers such that b and d do not have a common factor other than 1, i.e., HCF of b and d is 1, then

a/b - c/d = a × d - c × b/b × d

For example, 5/18 - 3/13 = 5 × 13 - 3 × 18/18 × 13 = 65 - 54/234 = 11/234

and -2/11 - 3/14 = (-2) × 14 - (3 × 11)/11 × 14 = -28 - 33/154 = -61/154

Rational Numbers

Introduction of Rational Numbers

What is Rational Numbers?

Is Every Rational Number a Natural Number?

Is Zero a Rational Number?

Is Every Rational Number an Integer?

Is Every Rational Number a Fraction?

Positive Rational Number

Negative Rational Number

Equivalent Rational Numbers

Equivalent form of Rational Numbers

Rational Number in Different Forms

Properties of Rational Numbers

Lowest form of a Rational Number

Standard form of a Rational Number

Equality of Rational Numbers using Standard Form

Equality of Rational Numbers with Common Denominator

Equality of Rational Numbers using Cross Multiplication

Comparison of Rational Numbers

Rational Numbers in Ascending Order

Rational Numbers in Descending Order

Representation of Rational Numbers on the Number Line

Rational Numbers on the Number Line

Addition of Rational Number with Same Denominator

Addition of Rational Number with Different Denominator

Addition of Rational Numbers

Properties of Addition of Rational Numbers

Subtraction of Rational Number with Same Denominator

Subtraction of Rational Number with Different Denominator

Subtraction of Rational Numbers

Properties of Subtraction of Rational Numbers

Rational Expressions Involving Addition and Subtraction

Simplify Rational Expressions Involving the Sum or Difference

Multiplication of Rational Numbers

Product of Rational Numbers

Properties of Multiplication of Rational Numbers

Rational Expressions Involving Addition, Subtraction and Multiplication

Reciprocal of a Rational  Number

Division of Rational Numbers

Rational Expressions Involving Division

Properties of Division of Rational Numbers

Rational Numbers between Two Rational Numbers

To Find Rational Numbers





8th Grade Math Practice

From Subtraction of Rational Number with Different Denominator to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Successor and Predecessor | Successor of a Whole Number | Predecessor

    Jul 29, 25 12:59 AM

    Successor and Predecessor
    The number that comes just before a number is called the predecessor. So, the predecessor of a given number is 1 less than the given number. Successor of a given number is 1 more than the given number…

    Read More

  2. Worksheet on Area, Perimeter and Volume | Square, Rectangle, Cube,Cubo

    Jul 28, 25 01:52 PM

    Volume of a Cuboids
    In this worksheet on area perimeter and volume you will get different types of questions on find the perimeter of a rectangle, find the perimeter of a square, find the area of a rectangle, find the ar…

    Read More

  3. Worksheet on Volume of a Cube and Cuboid |The Volume of a RectangleBox

    Jul 25, 25 03:15 AM

    Volume of a Cube and Cuboid
    We will practice the questions given in the worksheet on volume of a cube and cuboid. We know the volume of an object is the amount of space occupied by the object.1. Fill in the blanks:

    Read More

  4. Volume of a Cuboid | Volume of Cuboid Formula | How to Find the Volume

    Jul 24, 25 03:46 PM

    Volume of Cuboid
    Cuboid is a solid box whose every surface is a rectangle of same area or different areas. A cuboid will have a length, breadth and height. Hence we can conclude that volume is 3 dimensional. To measur…

    Read More

  5. Volume of a Cube | How to Calculate the Volume of a Cube? | Examples

    Jul 23, 25 11:37 AM

    Volume of a Cube
    A cube is a solid box whose every surface is a square of same area. Take an empty box with open top in the shape of a cube whose each edge is 2 cm. Now fit cubes of edges 1 cm in it. From the figure i…

    Read More

Rational Numbers - Worksheets

Worksheet on Rational Numbers

Worksheet on Equivalent Rational Numbers

Worksheet on Lowest form of a Rational Number

Worksheet on Standard form of a Rational Number

Worksheet on Equality of Rational Numbers

Worksheet on Comparison of Rational Numbers

Worksheet on Representation of Rational Number on a Number Line

Worksheet on Adding Rational Numbers

Worksheet on Properties of Addition of Rational Numbers

Worksheet on Subtracting Rational Numbers

Worksheet on Addition and Subtraction of Rational Number

Worksheet on Rational Expressions Involving Sum and Difference

Worksheet on Multiplication of Rational Number

Worksheet on Properties of Multiplication of Rational Numbers

Worksheet on Division of Rational Numbers

Worksheet on Properties of Division of Rational Numbers

Worksheet on Finding Rational Numbers between Two Rational Numbers

Worksheet on Word Problems on Rational Numbers

Worksheet on Operations on Rational Expressions

Objective Questions on Rational Numbers