Equivalent form of Rational Numbers

We will learn how to find the equivalent form of rational numbers expressing a given rational number in different forms and the equivalent form of the rational numbers having a common denominator.


1. Express \(\frac{-54}{90}\) as a rational number with denominator 5.

Solution:

In order to express \(\frac{-54}{90}\) as a rational number with denominator 5, we first find a number which gives 5 when 90 is divided by it. 
Clearly, such a number = (90 ÷ 5) = 18

Dividing the numerator and denominator of \(\frac{-54}{90}\) by 18, we have 
\(\frac{-54}{90}\) = \(\frac{(-54)  ÷  18}{90  ÷  18}\) = \(\frac{-3}{5}\)

Hence, expressing \(\frac{-54}{90}\) as a rational number with denominator 5 is \(\frac{-3}{5}\).

2. Fill in the blanks with the appropriate number in the numerator: \(\frac{5}{-7}\) = \(\frac{.....}{35}\) = \(\frac{.....}{-77}\).

Solution:

We have, 35 ÷ (-7) = - 5

Therefore, \(\frac{5}{-7}\) = \(\frac{5  ×  (-5)}{(-7)  ×  (- 5)}\) =  \(\frac{-25}{35}\)

Similarly, we have (-77) ÷ (-7) = 11
Therefore, \(\frac{5}{-7}\) = \(\frac{5  ×  11}{(-7)  ×  11}\) = \(\frac{55}{-77}\)

Hence, \(\frac{5}{-7}\) = \(\frac{-25}{35}\) = \(\frac{55}{-77}\)


More examples on equivalent form of rational numbers:

3. Find an equivalent form of the rational numbers \(\frac{2}{9}\) and \(\frac{5}{6}\) having a common denominator.

Solution:

We have to convert \(\frac{2}{9}\) and \(\frac{5}{6}\) into equivalent rational numbers having common denominator. 

Clearly, such a denominator is the LCM of 9 and 6.

We have, 9 = 3 × 3 and 6 = 2 × 3

Therefore, LCM of 9 and 6 is 2 × 3 × 3 = 18

Now, 18 ÷ 9 = 2 and 18 ÷ 6 = 3

Therefore, \(\frac{2}{9}\) = \(\frac{2  ×  2}{9  ×  2}\) = \(\frac{4}{18}\) and \(\frac{5}{6}\) = \(\frac{5  ×  3}{6  ×  3}\) = \(\frac{15}{18}\).

Hence, the given rational numbers with common denominator are \(\frac{4}{18}\) and \(\frac{15}{18}\).


4. Find an equivalent form of the rational numbers \(\frac{3}{4}\), \(\frac{7}{6}\) and \(\frac{11}{12}\) having a common denominator.

Solution:

We have to convert \(\frac{3}{4}\), \(\frac{7}{6}\) and \(\frac{11}{12}\) into equivalent rational numbers having common denominator. 

Clearly, such a denominator is the LCM of 4, 6 and 12.

We have, 4 = 2 × 2, 6 = 2 × 3 and 12 = 2 × 2 × 3

Therefore, LCM of 4, 6 and 12 is 2 × 2 × 3 = 12

Now, 12 ÷ 4 = 3, 12 ÷ 6 = 2 and 12 ÷ 12 = 1

Therefore, \(\frac{3}{4}\) = \(\frac{3  ×  3}{4  ×  3}\) = \(\frac{9}{12}\), \(\frac{7}{6}\) = \(\frac{7  ×  2}{6  ×  2}\) = \(\frac{12}{12}\) and \(\frac{11}{12}\) = \(\frac{11  ×  1}{12  ×  1}\) = \(\frac{11}{12}\)

Hence, the given rational numbers with common denominator are \(\frac{9}{12}\), \(\frac{14}{12}\) and \(\frac{11}{12}\).

Rational Numbers

Introduction of Rational Numbers

What is Rational Numbers?

Is Every Rational Number a Natural Number?

Is Zero a Rational Number?

Is Every Rational Number an Integer?

Is Every Rational Number a Fraction?

Positive Rational Number

Negative Rational Number

Equivalent Rational Numbers

Equivalent form of Rational Numbers

Rational Number in Different Forms

Properties of Rational Numbers

Lowest form of a Rational Number

Standard form of a Rational Number

Equality of Rational Numbers using Standard Form

Equality of Rational Numbers with Common Denominator

Equality of Rational Numbers using Cross Multiplication

Comparison of Rational Numbers

Rational Numbers in Ascending Order

Rational Numbers in Descending Order

Representation of Rational Numbers on the Number Line

Rational Numbers on the Number Line

Addition of Rational Number with Same Denominator

Addition of Rational Number with Different Denominator

Addition of Rational Numbers

Properties of Addition of Rational Numbers

Subtraction of Rational Number with Same Denominator

Subtraction of Rational Number with Different Denominator

Subtraction of Rational Numbers

Properties of Subtraction of Rational Numbers

Rational Expressions Involving Addition and Subtraction

Simplify Rational Expressions Involving the Sum or Difference

Multiplication of Rational Numbers

Product of Rational Numbers

Properties of Multiplication of Rational Numbers

Rational Expressions Involving Addition, Subtraction and Multiplication

Reciprocal of a Rational  Number

Division of Rational Numbers

Rational Expressions Involving Division

Properties of Division of Rational Numbers

Rational Numbers between Two Rational Numbers

To Find Rational Numbers






8th Grade Math Practice 

From Equivalent form of Rational Numbers to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Worksheets on Comparison of Numbers | Find the Greatest Number

    Oct 13, 24 01:53 PM

    Comparison of Two Numbers
    In worksheets on comparison of numbers students can practice the questions for fourth grade to compare numbers. This worksheet contains questions on numbers like to find the greatest number, arranging…

    Read More

  2. Counting Before, After and Between Numbers up to 10 | Number Counting

    Oct 10, 24 10:06 AM

    Before After Between
    Counting before, after and between numbers up to 10 improves the child’s counting skills.

    Read More

  3. Expanded Form of a Number | Writing Numbers in Expanded Form | Values

    Oct 10, 24 03:19 AM

    Expanded Form of a Number
    We know that the number written as sum of the place-values of its digits is called the expanded form of a number. In expanded form of a number, the number is shown according to the place values of its…

    Read More

  4. Place Value | Place, Place Value and Face Value | Grouping the Digits

    Oct 09, 24 05:16 PM

    Place Value of 3-Digit Numbers
    The place value of a digit in a number is the value it holds to be at the place in the number. We know about the place value and face value of a digit and we will learn about it in details. We know th…

    Read More

  5. 3-digit Numbers on an Abacus | Learning Three Digit Numbers | Math

    Oct 08, 24 10:53 AM

    3-Digit Numbers on an Abacus
    We already know about hundreds, tens and ones. Now let us learn how to represent 3-digit numbers on an abacus. We know, an abacus is a tool or a toy for counting. An abacus which has three rods.

    Read More

Rational Numbers - Worksheets

Worksheet on Rational Numbers

Worksheet on Equivalent Rational Numbers

Worksheet on Lowest form of a Rational Number

Worksheet on Standard form of a Rational Number

Worksheet on Equality of Rational Numbers

Worksheet on Comparison of Rational Numbers

Worksheet on Representation of Rational Number on a Number Line

Worksheet on Adding Rational Numbers

Worksheet on Properties of Addition of Rational Numbers

Worksheet on Subtracting Rational Numbers

Worksheet on Addition and Subtraction of Rational Number

Worksheet on Rational Expressions Involving Sum and Difference

Worksheet on Multiplication of Rational Number

Worksheet on Properties of Multiplication of Rational Numbers

Worksheet on Division of Rational Numbers

Worksheet on Properties of Division of Rational Numbers

Worksheet on Finding Rational Numbers between Two Rational Numbers

Worksheet on Word Problems on Rational Numbers

Worksheet on Operations on Rational Expressions

Objective Questions on Rational Numbers