Equivalent form of Rational Numbers

We will learn how to find the equivalent form of rational numbers expressing a given rational number in different forms and the equivalent form of the rational numbers having a common denominator.


1. Express \(\frac{-54}{90}\) as a rational number with denominator 5.

Solution:

In order to express \(\frac{-54}{90}\) as a rational number with denominator 5, we first find a number which gives 5 when 90 is divided by it. 
Clearly, such a number = (90 ÷ 5) = 18

Dividing the numerator and denominator of \(\frac{-54}{90}\) by 18, we have 
\(\frac{-54}{90}\) = \(\frac{(-54)  ÷  18}{90  ÷  18}\) = \(\frac{-3}{5}\)

Hence, expressing \(\frac{-54}{90}\) as a rational number with denominator 5 is \(\frac{-3}{5}\).

2. Fill in the blanks with the appropriate number in the numerator: \(\frac{5}{-7}\) = \(\frac{.....}{35}\) = \(\frac{.....}{-77}\).

Solution:

We have, 35 ÷ (-7) = - 5

Therefore, \(\frac{5}{-7}\) = \(\frac{5  ×  (-5)}{(-7)  ×  (- 5)}\) =  \(\frac{-25}{35}\)

Similarly, we have (-77) ÷ (-7) = 11
Therefore, \(\frac{5}{-7}\) = \(\frac{5  ×  11}{(-7)  ×  11}\) = \(\frac{55}{-77}\)

Hence, \(\frac{5}{-7}\) = \(\frac{-25}{35}\) = \(\frac{55}{-77}\)


More examples on equivalent form of rational numbers:

3. Find an equivalent form of the rational numbers \(\frac{2}{9}\) and \(\frac{5}{6}\) having a common denominator.

Solution:

We have to convert \(\frac{2}{9}\) and \(\frac{5}{6}\) into equivalent rational numbers having common denominator. 

Clearly, such a denominator is the LCM of 9 and 6.

We have, 9 = 3 × 3 and 6 = 2 × 3

Therefore, LCM of 9 and 6 is 2 × 3 × 3 = 18

Now, 18 ÷ 9 = 2 and 18 ÷ 6 = 3

Therefore, \(\frac{2}{9}\) = \(\frac{2  ×  2}{9  ×  2}\) = \(\frac{4}{18}\) and \(\frac{5}{6}\) = \(\frac{5  ×  3}{6  ×  3}\) = \(\frac{15}{18}\).

Hence, the given rational numbers with common denominator are \(\frac{4}{18}\) and \(\frac{15}{18}\).


4. Find an equivalent form of the rational numbers \(\frac{3}{4}\), \(\frac{7}{6}\) and \(\frac{11}{12}\) having a common denominator.

Solution:

We have to convert \(\frac{3}{4}\), \(\frac{7}{6}\) and \(\frac{11}{12}\) into equivalent rational numbers having common denominator. 

Clearly, such a denominator is the LCM of 4, 6 and 12.

We have, 4 = 2 × 2, 6 = 2 × 3 and 12 = 2 × 2 × 3

Therefore, LCM of 4, 6 and 12 is 2 × 2 × 3 = 12

Now, 12 ÷ 4 = 3, 12 ÷ 6 = 2 and 12 ÷ 12 = 1

Therefore, \(\frac{3}{4}\) = \(\frac{3  ×  3}{4  ×  3}\) = \(\frac{9}{12}\), \(\frac{7}{6}\) = \(\frac{7  ×  2}{6  ×  2}\) = \(\frac{12}{12}\) and \(\frac{11}{12}\) = \(\frac{11  ×  1}{12  ×  1}\) = \(\frac{11}{12}\)

Hence, the given rational numbers with common denominator are \(\frac{9}{12}\), \(\frac{14}{12}\) and \(\frac{11}{12}\).

Rational Numbers

Introduction of Rational Numbers

What is Rational Numbers?

Is Every Rational Number a Natural Number?

Is Zero a Rational Number?

Is Every Rational Number an Integer?

Is Every Rational Number a Fraction?

Positive Rational Number

Negative Rational Number

Equivalent Rational Numbers

Equivalent form of Rational Numbers

Rational Number in Different Forms

Properties of Rational Numbers

Lowest form of a Rational Number

Standard form of a Rational Number

Equality of Rational Numbers using Standard Form

Equality of Rational Numbers with Common Denominator

Equality of Rational Numbers using Cross Multiplication

Comparison of Rational Numbers

Rational Numbers in Ascending Order

Rational Numbers in Descending Order

Representation of Rational Numbers on the Number Line

Rational Numbers on the Number Line

Addition of Rational Number with Same Denominator

Addition of Rational Number with Different Denominator

Addition of Rational Numbers

Properties of Addition of Rational Numbers

Subtraction of Rational Number with Same Denominator

Subtraction of Rational Number with Different Denominator

Subtraction of Rational Numbers

Properties of Subtraction of Rational Numbers

Rational Expressions Involving Addition and Subtraction

Simplify Rational Expressions Involving the Sum or Difference

Multiplication of Rational Numbers

Product of Rational Numbers

Properties of Multiplication of Rational Numbers

Rational Expressions Involving Addition, Subtraction and Multiplication

Reciprocal of a Rational  Number

Division of Rational Numbers

Rational Expressions Involving Division

Properties of Division of Rational Numbers

Rational Numbers between Two Rational Numbers

To Find Rational Numbers






8th Grade Math Practice 

From Equivalent form of Rational Numbers to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd Grade Geometry Worksheet | Plane and Solid Shapes | Point | Line

    Dec 14, 24 02:12 PM

    Curved Line and Straight Line
    2nd grade geometry worksheet

    Read More

  2. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 14, 24 12:25 PM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  3. Patterns in Numbers | Patterns in Maths |Math Patterns|Series Patterns

    Dec 13, 24 08:43 AM

    Complete the Series Patterns
    We see so many patterns around us in our daily life. We know that a pattern is an arrangement of objects, colors, or numbers placed in a certain order. Some patterns neither grow nor reduce but only r…

    Read More

  4. Patterns in Math | Missing Number | Counting Numbers | Worksheets

    Dec 13, 24 12:31 AM

    Finding patterns in math is very important to understand the sequence in the series. We need to find the exact missing number that from the group of numbers. The counting numbers may be counting

    Read More

  5. Concept of Pattern | Similar Patterns in Mathematics | Similar Pattern

    Dec 12, 24 11:22 PM

    Patterns in Necklace
    Concept of pattern will help us to learn the basic number patterns and table patterns. Animals such as all cows, all lions, all dogs and all other animals have dissimilar features. All mangoes have si…

    Read More

Rational Numbers - Worksheets

Worksheet on Rational Numbers

Worksheet on Equivalent Rational Numbers

Worksheet on Lowest form of a Rational Number

Worksheet on Standard form of a Rational Number

Worksheet on Equality of Rational Numbers

Worksheet on Comparison of Rational Numbers

Worksheet on Representation of Rational Number on a Number Line

Worksheet on Adding Rational Numbers

Worksheet on Properties of Addition of Rational Numbers

Worksheet on Subtracting Rational Numbers

Worksheet on Addition and Subtraction of Rational Number

Worksheet on Rational Expressions Involving Sum and Difference

Worksheet on Multiplication of Rational Number

Worksheet on Properties of Multiplication of Rational Numbers

Worksheet on Division of Rational Numbers

Worksheet on Properties of Division of Rational Numbers

Worksheet on Finding Rational Numbers between Two Rational Numbers

Worksheet on Word Problems on Rational Numbers

Worksheet on Operations on Rational Expressions

Objective Questions on Rational Numbers