Representation of Rational Numbers on the Number Line

In representation of rational numbers on the number line are discussed here. We know how to represent integers on the number line.To represent the integers on the number line, we need to draw a line and take a point O on it. Call it 0 (zero).

Set of equal distances on the right as well as on the left of O. Such a distance is known as a unit length. Let A, B, C, D, etc. be the points of division on the right of 'O' and A',B', C', D', etc. be the points of division on the left of 'O'. If we take OA = 1 unit, then clearly, the point A, B, C, D, etc. represent the integers 1, 2, 3, 4, etc. respectively and the point A', B', C', D', etc. represent the integers -1, -2, -3, -4, etc. respectively.

Note: The point O represents integer 0.

Representation of Rational Numbers on the Number Line

Thus, we may represent any integer by a point on the number line. Clearly, every positive integer lies to the right of O and every negative integer lies to the left of O. 

We can represent rational numbers on the number line in the same way as we have learnt to represent integers on the number line.
In order to represent rational numbers on the number line, first we need to draw a straight line and mark a point O on it to represent the rational number zero. The positive (+ve) rational numbers will be represented by points on the number line lying to the right side of O and negative (-ve) rational numbers.

If we mark a point A on the line to the right of  O  to represent 1, then OA = 1 unit. Similarly, if we choose a point A' on the line to the left of O to represent -1, then OA' = 1 unit.

Consider the following examples on representation of rational numbers on the number line;

1. Represent \(\frac{1}{2}\) and \(\frac{-1}{2}\) on the number line.

Solution:


Draw a line. Take a point O on it. Let the point O represent 0. Set off unit lengths OA to the right side of O and OA' to the left side of O.

Then, A represents the integer 1 and A' represents the integer -1.

Represent 1/2 and -1/2 on the number line

Now, divide the segment OA into two equal parts. Let P be the mid-point of segment OA and OP be the first part out of these two parts. Thus, OP = PA = \(\frac{1}{2}\). Since, O represents 0 and A represents 1, therefore P represents the rational number \(\frac{1}{2}\).

Again, divide OA' into two equal parts. Let OP' be the first part out of these two parts. Thus, OP' = PA' = \(\frac{-1}{2}\). Since, O represents 0 and A' represents -1, therefore P' represents the rational number \(\frac{-1}{2}\).



2. Represent \(\frac{2}{3}\) and \(\frac{-2}{3}\) on the number line.

Solution:


Draw a line. Take a point O on it. Let it represent 0. From the point O set off unit distances OA to the right side of O and OA'  to the left side of O respectively.

Divide OA into three equal parts. Let OP be the segment showing 2 parts out of 3. Then the point P represents the rational number \(\frac{2}{3}\).

Represent 2/3 and -2/3 on the number line

Again, divide OA' into three equal parts. Let OP' be the segment consisting of 2 parts out of these 3 parts. Then, the point P' represents the rational number \(\frac{-2}{3}\).



3. Represent \(\frac{13}{5}\) and \(\frac{-13}{5}\) on the number line.

Solution:


Draw a line. Take a point O on it. Let it represent 0.

Now, \(\frac{13}{5}\) = 2\(\frac{3}{5}\) = 2 + \(\frac{3}{5}\)

From O, set off unit distances OA, AB and BC to the right of O. Clearly, the points A, B and C represent the integers 1, 2 and 3 respectively. Now, take 2 units OA and AB, and divide the third unit BC into 5 equal parts. Take 3 parts out of these 5 parts to reach at a point P. Then the point P represents the rational number \(\frac{13}{5}\).

Represent 13/5 and -13/5 on the number line

Again, from the point O, set off unit distances to the left. Let these segments be OA', A' B', B’ C’, etc. Then, clearly the points A’, B’ and C’ represent the integers -1, -2, -3 respectively.

Now, = -\(\frac{13}{5}\) = -(2 + \(\frac{3}{5}\))

Take 2 full unit lengths to the left of O. Divide the third unit B’ C’ into 5 equal parts. Take 3 parts out of these 5 parts to reach a point P’.

Then, the point P’ represents the rational number -\(\frac{13}{5}\).

Thus, we can represent every rational number by a point on the number line.

Rational Numbers

Introduction of Rational Numbers

What is Rational Numbers?

Is Every Rational Number a Natural Number?

Is Zero a Rational Number?

Is Every Rational Number an Integer?

Is Every Rational Number a Fraction?

Positive Rational Number

Negative Rational Number

Equivalent Rational Numbers

Equivalent form of Rational Numbers

Rational Number in Different Forms

Properties of Rational Numbers

Lowest form of a Rational Number

Standard form of a Rational Number

Equality of Rational Numbers using Standard Form

Equality of Rational Numbers with Common Denominator

Equality of Rational Numbers using Cross Multiplication

Comparison of Rational Numbers

Rational Numbers in Ascending Order

Rational Numbers in Descending Order

Representation of Rational Numbers on the Number Line

Rational Numbers on the Number Line

Addition of Rational Number with Same Denominator

Addition of Rational Number with Different Denominator

Addition of Rational Numbers

Properties of Addition of Rational Numbers

Subtraction of Rational Number with Same Denominator

Subtraction of Rational Number with Different Denominator

Subtraction of Rational Numbers

Properties of Subtraction of Rational Numbers

Rational Expressions Involving Addition and Subtraction

Simplify Rational Expressions Involving the Sum or Difference

Multiplication of Rational Numbers

Product of Rational Numbers

Properties of Multiplication of Rational Numbers

Rational Expressions Involving Addition, Subtraction and Multiplication

Reciprocal of a Rational  Number

Division of Rational Numbers

Rational Expressions Involving Division

Properties of Division of Rational Numbers

Rational Numbers between Two Rational Numbers

To Find Rational Numbers







8th Grade Math Practice

From Representation of Rational Numbers on the Number Line to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Properties of Division | Division of Property Overview|Math Properties

    Jan 22, 25 01:30 AM

    Properties of Division
    The properties of division are discussed here: 1. If we divide a number by 1 the quotient is the number itself. In other words, when any number is divided by 1, we always get the number itself as the…

    Read More

  2. Terms Used in Division | Dividend | Divisor | Quotient | Remainder

    Jan 22, 25 12:54 AM

    Divide 12 Candies
    The terms used in division are dividend, divisor, quotient and remainder. Division is repeated subtraction. For example: 24 ÷ 6 How many times would you subtract 6 from 24 to reach 0?

    Read More

  3. Divide on a Number Line | Various Division Problems | Solved Examples

    Jan 22, 25 12:41 AM

    How to divide on a number line? Learn to divide using number line to find the quotient. Solved examples to show divide on a number line: 1. Solve 14 ÷ 7 Solution: 7 is subtracted repeatedly

    Read More

  4. Divide by Repeated Subtraction | Division as Repeated Subtraction

    Jan 22, 25 12:18 AM

    Divide by Repeated Subtraction
    How to divide by repeated subtraction? We will learn how to find the quotient and remainder by the method of repeated subtraction a division problem may be solved.

    Read More

  5. Division Sharing and Grouping | Facts about Division | Basic Division

    Jan 21, 25 08:06 AM

    Sharing and Grouping
    We will learn division sharing and grouping. Share eight strawberries between four children. Let us distribute strawberries equally to all the four children one by one.

    Read More

Rational Numbers - Worksheets

Worksheet on Rational Numbers

Worksheet on Equivalent Rational Numbers

Worksheet on Lowest form of a Rational Number

Worksheet on Standard form of a Rational Number

Worksheet on Equality of Rational Numbers

Worksheet on Comparison of Rational Numbers

Worksheet on Representation of Rational Number on a Number Line

Worksheet on Adding Rational Numbers

Worksheet on Properties of Addition of Rational Numbers

Worksheet on Subtracting Rational Numbers

Worksheet on Addition and Subtraction of Rational Number

Worksheet on Rational Expressions Involving Sum and Difference

Worksheet on Multiplication of Rational Number

Worksheet on Properties of Multiplication of Rational Numbers

Worksheet on Division of Rational Numbers

Worksheet on Properties of Division of Rational Numbers

Worksheet on Finding Rational Numbers between Two Rational Numbers

Worksheet on Word Problems on Rational Numbers

Worksheet on Operations on Rational Expressions

Objective Questions on Rational Numbers