Simplify Rational Expressions Involving the Sum or Difference

In order to simplify rational expressions involving the sum or difference of three or more rational numbers, we may use the following steps:

Step I: Find the LCM of the denominator of all the numbers involved.

Step II: Write a rational number whose denominator is the LCM obtained in Step I and numerator is computed as follows:

Divide the LCM obtained in step I by the denominator of first rational number and get a quotient. Multiply the numerator of first rational number by this quotient. Repeat this procedure for all rational numbers. Retain the given signs of addition and subtraction between the given rational numbers and get an expression involving integers. Simplify this expression to get an integer as the numerator.

Step III: Reduce the rational number obtained in step II to the lowest form if it is not already so. This rational number so obtained is the required rational number.

How to simplify rational expressions involving the sum or difference of two or more rational numbers?

The following examples will illustrate the above procedure to simplify the expressions.

1. Simplify: -3/4 + 9/8 - (-5)/6

Solution:

We have,

-3/4 + 9/8 - (-5)/6 = -3/4 + 9/8 + 5/6, [Since, -(-5)/6 = 5/6]

Clearly, denominators of the three rational numbers are positive. We now re-write them so that they have a common denominator equal to the LCM of the denominators.

In this case the denominators are 4, 8 and 6.

The LCM of 4, 8 and 6 is 24.

Now, -3/4 = (-3) × 6/4 × 6 = -28/24,

9/8 = 9 × 3/8 × 3 = 27/24 and

5/6 = 5 × 4/6 × 4 = 20/24

Therefore, -3/4 + 9/8 - (-5)/6

            = -3/4 + 9/8 + 5/6

            = -28/24 + 27/24 + 20/24

            = (-28 + 27 + 20)/24

            = 19/24

Thus, -3/4 + 9/8 - (-5)/6 = 19/24

 

2. Simplify: 7/10 - (-7)/14 + 9/-5

Solution:

First we write each of the given numbers with positive denominator.

Clearly, denominators of 7/10 and (-7)/14 are positive.

The denominator of 9/-5 is negative.

The rational number 9/-4 with positive denominator is -9/5.

Therefore, 7/10 - (-7)/14 + 9/-5 = 7/10 - (-7)/14 + (-9)/5

We now re-write them so that they have a common denominator equal to the LCM of the denominators.

In this case the denominators are 10, 14 and 5.

The LCM of 10, 14 and 5 is 70.

Now, 7/10 = 7 × 7/10 × 7 = 49/70,

(-7)/14 = (-7) × 5/14 × 5 = (-35)/70 and

(-9)/5 = (-9) × 14/5 × 14 = (-126)/70

Therefore, 7/10 - (-7)/14 + 9/-5

            = 7/10 - (-7)/14 + (-9)/5

            = 49/70 - (-35)/70 + (-126)/70

            = 49/70 + 35/70 + (-126)/70, [Since, - (-35)/70 = 35/70]

            = [49 + 35 + (-126)]/70

            = -42/70

            = -3/5

Thus, 7/10 - (-7)/14 + 9/-5 = -3/5

Rational Numbers

Introduction of Rational Numbers

What is Rational Numbers?

Is Every Rational Number a Natural Number?

Is Zero a Rational Number?

Is Every Rational Number an Integer?

Is Every Rational Number a Fraction?

Positive Rational Number

Negative Rational Number

Equivalent Rational Numbers

Equivalent form of Rational Numbers

Rational Number in Different Forms

Properties of Rational Numbers

Lowest form of a Rational Number

Standard form of a Rational Number

Equality of Rational Numbers using Standard Form

Equality of Rational Numbers with Common Denominator

Equality of Rational Numbers using Cross Multiplication

Comparison of Rational Numbers

Rational Numbers in Ascending Order

Rational Numbers in Descending Order

Representation of Rational Numbers on the Number Line

Rational Numbers on the Number Line

Addition of Rational Number with Same Denominator

Addition of Rational Number with Different Denominator

Addition of Rational Numbers

Properties of Addition of Rational Numbers

Subtraction of Rational Number with Same Denominator

Subtraction of Rational Number with Different Denominator

Subtraction of Rational Numbers

Properties of Subtraction of Rational Numbers

Rational Expressions Involving Addition and Subtraction

Simplify Rational Expressions Involving the Sum or Difference

Multiplication of Rational Numbers

Product of Rational Numbers

Properties of Multiplication of Rational Numbers

Rational Expressions Involving Addition, Subtraction and Multiplication

Reciprocal of a Rational  Number

Division of Rational Numbers

Rational Expressions Involving Division

Properties of Division of Rational Numbers

Rational Numbers between Two Rational Numbers

To Find Rational Numbers





8th Grade Math Practice

From Simplify Rational Expressions Involving the Sum or Difference to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Successor and Predecessor | Successor of a Whole Number | Predecessor

    May 24, 24 06:42 PM

    Successor and Predecessor of a Whole Number
    The number that comes just before a number is called the predecessor. So, the predecessor of a given number is 1 less than the given number. Successor of a given number is 1 more than the given number…

    Read More

  2. Counting Natural Numbers | Definition of Natural Numbers | Counting

    May 24, 24 06:23 PM

    Natural numbers are all the numbers from 1 onwards, i.e., 1, 2, 3, 4, 5, …... and are used for counting. We know since our childhood we are using numbers 1, 2, 3, 4, 5, 6, ………..

    Read More

  3. Whole Numbers | Definition of Whole Numbers | Smallest Whole Number

    May 24, 24 06:22 PM

    The whole numbers are the counting numbers including 0. We have seen that the numbers 1, 2, 3, 4, 5, 6……. etc. are natural numbers. These natural numbers along with the number zero

    Read More

  4. Math Questions Answers | Solved Math Questions and Answers | Free Math

    May 24, 24 05:37 PM

    Math Questions Answers
    In math questions answers each questions are solved with explanation. The questions are based from different topics. Care has been taken to solve the questions in such a way that students

    Read More

  5. Estimating Sum and Difference | Reasonable Estimate | Procedure | Math

    May 24, 24 05:09 PM

    Estimating Sum or Difference
    The procedure of estimating sum and difference are in the following examples. Example 1: Estimate the sum 5290 + 17986 by estimating the numbers to their nearest (i) hundreds (ii) thousands.

    Read More

Rational Numbers - Worksheets

Worksheet on Rational Numbers

Worksheet on Equivalent Rational Numbers

Worksheet on Lowest form of a Rational Number

Worksheet on Standard form of a Rational Number

Worksheet on Equality of Rational Numbers

Worksheet on Comparison of Rational Numbers

Worksheet on Representation of Rational Number on a Number Line

Worksheet on Adding Rational Numbers

Worksheet on Properties of Addition of Rational Numbers

Worksheet on Subtracting Rational Numbers

Worksheet on Addition and Subtraction of Rational Number

Worksheet on Rational Expressions Involving Sum and Difference

Worksheet on Multiplication of Rational Number

Worksheet on Properties of Multiplication of Rational Numbers

Worksheet on Division of Rational Numbers

Worksheet on Properties of Division of Rational Numbers

Worksheet on Finding Rational Numbers between Two Rational Numbers

Worksheet on Word Problems on Rational Numbers

Worksheet on Operations on Rational Expressions

Objective Questions on Rational Numbers