Subscribe to our YouTube channel for the latest videos, updates, and tips.


Rational Number in Different Forms

We will learn how to find the rational number in different forms using the properties in expressing a given rational number.


1. Express \(\frac{-3}{10}\) as a rational number with denominator 20.

Solution:  

In order to express \(\frac{-3}{10}\) as a rational number with denominator 20, we first find the number which when multiplied by 10 gives 20. 
Clearly, such a number = 20 ÷ 10 = 2

Multiplying the numerator and denominator of \(\frac{-3}{10}\) by 2, we have 

\(\frac{-3}{10}\) = \(\frac{(-3)  ×  2}{10  ×  2}\) = \(\frac{-6}{20}\)

Therefore, expressing \(\frac{-3}{10}\) as a rational number with denominator 20 is \(\frac{-6}{20}\).

2. Express \(\frac{-3}{10}\) as a rational number with denominator -30.

Solution:  

In order to express \(\frac{-3}{10}\) as a rational number with denominator -30, we first
find a number which when multiplied by 10 gives -30.
Clearly, such a number is = (-30) ÷ 10 = -3.

Multiplying the numerator and denominator of \(\frac{-3}{10}\) by -3, we have

\(\frac{-3}{10}\) = \(\frac{(-3)  ×  (-3)}{10  ×  (-3)}\) = \(\frac{9}{-30}\)

Therefore, expressing \(\frac{-3}{10}\) as a rational number with denominator -30 is \(\frac{9}{-30}\).


3. Express \(\frac{42}{-63}\) as a rational number with denominator 3.

Solution:

In order to express \(\frac{42}{-63}\) as a rational number with denominator 3, we first find a number which gives 3 when -63 is divided by it.

Clearly, such a number = (-63) ÷ 3 = -21

Dividing the numerator and denominator of \(\frac{42}{-63}\) by -21, we get

\(\frac{42}{-63}\) = \(\frac{42  ÷  (-21)}{(-63)  ÷  (-21)}\) = \(\frac{-2}{3}\)

Therefore, expressing \(\frac{42}{-63}\) as a rational number in different form with denominator 3 is \(\frac{-2}{3}\).


4. Fill in the blanks with the appropriate number in the denominator:
\(\frac{7}{13}\) = \(\frac{35}{.....}\)  = \(\frac{-63}{.....}\)

Solution:

We have, 35 ÷ 7 = 5

Therefore, \(\frac{7}{13}\) = \(\frac{7  ×  5}{13  ×  5}\) = \(\frac{35}{65}\)

Similarly, we have (-63) ÷ 7 = -9

Therefore, \(\frac{7}{13}\) = \(\frac{7  ×  (-9)}{13  ×  (9)}\) = \(\frac{-63}{-117}\)

Hence, \(\frac{7}{13}\) = \(\frac{35}{65}\) = \(\frac{-63}{-117}\)

Rational Numbers

Introduction of Rational Numbers

What is Rational Numbers?

Is Every Rational Number a Natural Number?

Is Zero a Rational Number?

Is Every Rational Number an Integer?

Is Every Rational Number a Fraction?

Positive Rational Number

Negative Rational Number

Equivalent Rational Numbers

Equivalent form of Rational Numbers

Rational Number in Different Forms

Properties of Rational Numbers

Lowest form of a Rational Number

Standard form of a Rational Number

Equality of Rational Numbers using Standard Form

Equality of Rational Numbers with Common Denominator

Equality of Rational Numbers using Cross Multiplication

Comparison of Rational Numbers

Rational Numbers in Ascending Order

Rational Numbers in Descending Order

Representation of Rational Numbers on the Number Line

Rational Numbers on the Number Line

Addition of Rational Number with Same Denominator

Addition of Rational Number with Different Denominator

Addition of Rational Numbers

Properties of Addition of Rational Numbers

Subtraction of Rational Number with Same Denominator

Subtraction of Rational Number with Different Denominator

Subtraction of Rational Numbers

Properties of Subtraction of Rational Numbers

Rational Expressions Involving Addition and Subtraction

Simplify Rational Expressions Involving the Sum or Difference

Multiplication of Rational Numbers

Product of Rational Numbers

Properties of Multiplication of Rational Numbers

Rational Expressions Involving Addition, Subtraction and Multiplication

Reciprocal of a Rational  Number

Division of Rational Numbers

Rational Expressions Involving Division

Properties of Division of Rational Numbers

Rational Numbers between Two Rational Numbers

To Find Rational Numbers






8th Grade Math Practice 

From Rational Number in Different Forms to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Terms Related to Simple Interest | Simple Interest Formula | Principal

    Jun 18, 25 02:57 PM

    In terms related to simple interest we will learn all the terms related to simple interest. The terms related to simple interest are Interest, Principal, Amount, Simple Interest, Time or period of tim…

    Read More

  2. Introduction to Simple Interest | Definition | Formula | Examples

    Jun 18, 25 01:50 AM

    Simple Interest
    In simple interest we will learn and identify about the terms like Principal, Time, Rate, Amount, etc. PRINCIPAL (P): The money you deposit or put in the bank is called the PRINCIPAL.

    Read More

  3. 5th Grade Profit and Loss Percentage Worksheet | Profit and Loss | Ans

    Jun 18, 25 01:33 AM

    5th Grade Profit and Loss Percentage Worksheet
    In 5th grade profit and loss percentage worksheet you will get different types of problems on finding the profit or loss percentage when cost price and selling price are given, finding the selling pri…

    Read More

  4. Worksheet on Profit and Loss | Word Problem on Profit and Loss | Math

    Jun 18, 25 01:29 AM

    Worksheet on Profit and Loss
    In worksheet on profit and loss, we can see below there are some different types of questions which we can practice in our homework.

    Read More

  5. Calculating Profit Percent and Loss Percent | Profit and Loss Formulas

    Jun 15, 25 04:06 PM

    In calculating profit percent and loss percent we will learn about the basic concepts of profit and loss. We will recall facts and formula while calculating profit percent and loss percent. Now we wil

    Read More

Rational Numbers - Worksheets

Worksheet on Rational Numbers

Worksheet on Equivalent Rational Numbers

Worksheet on Lowest form of a Rational Number

Worksheet on Standard form of a Rational Number

Worksheet on Equality of Rational Numbers

Worksheet on Comparison of Rational Numbers

Worksheet on Representation of Rational Number on a Number Line

Worksheet on Adding Rational Numbers

Worksheet on Properties of Addition of Rational Numbers

Worksheet on Subtracting Rational Numbers

Worksheet on Addition and Subtraction of Rational Number

Worksheet on Rational Expressions Involving Sum and Difference

Worksheet on Multiplication of Rational Number

Worksheet on Properties of Multiplication of Rational Numbers

Worksheet on Division of Rational Numbers

Worksheet on Properties of Division of Rational Numbers

Worksheet on Finding Rational Numbers between Two Rational Numbers

Worksheet on Word Problems on Rational Numbers

Worksheet on Operations on Rational Expressions

Objective Questions on Rational Numbers