Properties of Multiplication of Rational Numbers

We will learn the properties of multiplication of rational numbers i.e. closure property, commutative property, associative property, existence of multiplicative identity property, existence of multiplicative inverse property, distributive property of multiplication over addition and multiplicative property of 0.


Closure property of multiplication of rational numbers:

The product of two rational numbers is always a rational number. 

If a/b and c/d are any two rational numbers then (a/b × c/d) is also a rational number.

For example:

(i) Consider the rational numbers 1/2 and 5/7. Then, 

(1/2 × 5/7) = (1 × 5)/(2 × 7) = 5/14, is a rational number . 

(ii) Consider the rational numbers -3/7 and 5/14. Then 

(-3/7 × 5/14) = {(-3) × 5}/(7 × 14) = -15/98, is a rational number . 

(iii) Consider the rational numbers -4/5 and -7/3. Then 

(-4/5 × -7/3) = {(-4) × (-7)}/(5 × 3) = 28/15, is a rational number. 


Commutative property of multiplication of rational numbers:


Two rational numbers can be multiplied in any order. 

Thus, for any rational numbers a/b and c/d, we have: 

(a/b × c/d) = (c/d × a/b) 

For example:

(i) Let us consider the rational numbers 3/4 and 5/7 Then, 

(3/4 × 5/7) = (3 × 5)/(4 × 7) = 15/28 and (5/7 × 3/4) = (5 × 3)/(7 × 4)

= 15/28

Therefore, (3/4 × 5/7) = (5/7 × 3/4) 

(ii) Let us consider the rational numbers -2/5 and 6/7.Then, 

{(-2)/5 × 6/7} = {(-2) × 6}/(5 × 7) = -12/35 and (6/7 × -2/5 ) 

= {6 × (-2)}/(7 × 5) = -12/35

Therefore, (-2/5 × 6/7 ) = (6/7 × (-2)/5)

(iii) Let us consider the rational numbers -2/3 and -5/7 Then, 

(-2)/3 × (-5)/7 = {(-2) × (-5) }/(3 × 7) = 10/21 and (-5/7) × (-2/3) 

= {(-5) × (-2)}/(7 × 3) = 10/21 

Therefore, (-2/3) × (-5/7) = (-5/7) × (-2)/3



Associative property of multiplication of rational numbers:


While multiplying three or more rational numbers, they can be grouped in any order. 

Thus, for any rationals a/b, c/d, and e/f we have: 

(a/b × c/d) × e/f = a/b × (c/d × e/f) 

For example: 

Consider the rationals -5/2, -7/4 and 1/3 we have 

(-5/2 × (-7)/4 ) × 1/3 = {(-5) × (-7)}/(2 × 4) ×1/3} = (35/8 × 1/3)

= (35 × 1)/(8 × 3) = 35/24

and (-5)/2 × (-7/4 × 1/3) = -5/2 × {(-7) × 1}/(4 × 3) = (-5/2 × -7/12)

= {(-5) × (-7)}/(2 × 12) = 35/24

Therefore, (-5/2 × -7/4 ) × 1/3 = (-5/2) × (-7/4 × 1/3) 


Existence of multiplicative identity property:


For any rational number a/b, we have (a/b × 1) = (1 × a/b) = a/b

1 is called the multiplicative identity for rationals. 

For example:

(i) Consider the rational number 3/4. Then, we have 

(3/4 × 1) = (3/4 × 1/1) = (3 × 1)/(4 × 1) = 3/4 and ( 1 × 3/4 )

= (1/1 × 3/4 ) = (1 × 3)/(1 × 4) = 3/4 

Therefore, (3/4 × 1) = (1 × 3/4) = 3/4. 

(ii) Consider the rational -9/13. Then, we have

(-9/13 × 1) = (-9/13 × 1/1) = {(-9) × 1}/(13 × 1) = -9/13 

and (1 × (-9)/13) = (1/1 × (-9)/13) = {1 × (-9)}/(1 × 13) = -9/13

Therefore, {(-9)/13 × 1} = {1 ×(-9)/13} = (-9)/13


Existence of multiplicative inverse property:

Every nonzero rational number a/b has its multiplicative inverse b/a. 

Thus, (a/b × b/a) = (b/a × a/b) = 1

b/a is called the reciprocal of a/b. 

Clearly, zero has no reciprocal. 

Reciprocal of 1 is 1 and the reciprocal of (-1) is (-1) 

For example: 

(i) Reciprocal of 5/7 is 7/5, since (5/7 × 7/5) = (7/5 × 5/7) = 1 

(ii) Reciprocal of -8/9 is -9/8, since (-8/9 × -9/8) = (-9/8 × -8/9 ) =1

(iii) Reciprocal of -3 is -1/3, since

(-3 × (-1)/3) = (-3/1 × (-1)/3) = {(-3) × (-1)}/(1 × 3) = 3/3 = 1 

and (-1/3 × (-3)) = (-1/3 × (-3)/1) = {(-1) × (-3)}/(3 × 1) = 1 

Note: 


Denote the reciprocal of a/b by (a/b)-1

Clearly (a/b)-1 = b/a 


Distributive property of multiplication over addition:

For any three rational numbers a/b, c/d and e/f, we have: 

a/b × (c/d + e/f) = (a/b ×c/d ) + (a/b × e/f) 

For example: 

Consider the rational numbers -3/4, 2/3 and -5/6 we have 

(-3)/4 × {2/3 + (-5)/6} = (-3/4) × {4 + -5/ 6} = (-3/4) × (-1)/6 

= {(-3) × (-1)}/(4 × 6) = 3/24 = 1/8 

again, (-3/4) × 2/3 = {(-3) × 2}/(4 × 3) = -6/12 = -1/2

and

(-3/4) ×(-5/6) = {(-3) × (-5)}/(4 × 6) = 15/24 = 5/8 

Therefore, (-3/4) × 2/3 } + {(-3/4) × (-5/6)} = (-1/2 + 5/8 )

= {(-4) + 5}/8 = 1/8 

Hence, (-3/4) × (2/3 + (-5)/6) = {(-3/4) × 2/3} + {(-3/4) × (-5)/6}.


Multiplicative property of 0: 

Every rational number multiplied with 0 gives 0. 

Thus, for any rational number a/b, we have (a/b × 0) = (0 × a/b) = 0. 

For example: 

(i) (5/18 × 0) = (5/18 × 0/1) = (5 × 0)/(18 × 1) = 0/18 . 

Similarly, (0 × 5/8) = 0 

(ii) {(-12)/17 × 0} = {(-12)/17 × 0/1} = [{(-12) × 0}/{17 × 1}] = 0/17 

= 0. 

Similarly, (0 × (-12)/17) = 0

Rational Numbers

Introduction of Rational Numbers

What is Rational Numbers?

Is Every Rational Number a Natural Number?

Is Zero a Rational Number?

Is Every Rational Number an Integer?

Is Every Rational Number a Fraction?

Positive Rational Number

Negative Rational Number

Equivalent Rational Numbers

Equivalent form of Rational Numbers

Rational Number in Different Forms

Properties of Rational Numbers

Lowest form of a Rational Number

Standard form of a Rational Number

Equality of Rational Numbers using Standard Form

Equality of Rational Numbers with Common Denominator

Equality of Rational Numbers using Cross Multiplication

Comparison of Rational Numbers

Rational Numbers in Ascending Order

Rational Numbers in Descending Order

Representation of Rational Numbers on the Number Line

Rational Numbers on the Number Line

Addition of Rational Number with Same Denominator

Addition of Rational Number with Different Denominator

Addition of Rational Numbers

Properties of Addition of Rational Numbers

Subtraction of Rational Number with Same Denominator

Subtraction of Rational Number with Different Denominator

Subtraction of Rational Numbers

Properties of Subtraction of Rational Numbers

Rational Expressions Involving Addition and Subtraction

Simplify Rational Expressions Involving the Sum or Difference

Multiplication of Rational Numbers

Product of Rational Numbers

Properties of Multiplication of Rational Numbers

Rational Expressions Involving Addition, Subtraction and Multiplication

Reciprocal of a Rational  Number

Division of Rational Numbers

Rational Expressions Involving Division

Properties of Division of Rational Numbers

Rational Numbers between Two Rational Numbers

To Find Rational Numbers





8th Grade Math Practice 

From Properties of Multiplication of Rational Numbers to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Worksheets on Comparison of Numbers | Find the Greatest Number

    Oct 10, 24 05:15 PM

    Comparison of Two Numbers
    In worksheets on comparison of numbers students can practice the questions for fourth grade to compare numbers. This worksheet contains questions on numbers like to find the greatest number, arranging…

    Read More

  2. Counting Before, After and Between Numbers up to 10 | Number Counting

    Oct 10, 24 10:06 AM

    Before After Between
    Counting before, after and between numbers up to 10 improves the child’s counting skills.

    Read More

  3. Expanded Form of a Number | Writing Numbers in Expanded Form | Values

    Oct 10, 24 03:19 AM

    Expanded Form of a Number
    We know that the number written as sum of the place-values of its digits is called the expanded form of a number. In expanded form of a number, the number is shown according to the place values of its…

    Read More

  4. Place Value | Place, Place Value and Face Value | Grouping the Digits

    Oct 09, 24 05:16 PM

    Place Value of 3-Digit Numbers
    The place value of a digit in a number is the value it holds to be at the place in the number. We know about the place value and face value of a digit and we will learn about it in details. We know th…

    Read More

  5. 3-digit Numbers on an Abacus | Learning Three Digit Numbers | Math

    Oct 08, 24 10:53 AM

    3-Digit Numbers on an Abacus
    We already know about hundreds, tens and ones. Now let us learn how to represent 3-digit numbers on an abacus. We know, an abacus is a tool or a toy for counting. An abacus which has three rods.

    Read More

Rational Numbers - Worksheets

Worksheet on Rational Numbers

Worksheet on Equivalent Rational Numbers

Worksheet on Lowest form of a Rational Number

Worksheet on Standard form of a Rational Number

Worksheet on Equality of Rational Numbers

Worksheet on Comparison of Rational Numbers

Worksheet on Representation of Rational Number on a Number Line

Worksheet on Adding Rational Numbers

Worksheet on Properties of Addition of Rational Numbers

Worksheet on Subtracting Rational Numbers

Worksheet on Addition and Subtraction of Rational Number

Worksheet on Rational Expressions Involving Sum and Difference

Worksheet on Multiplication of Rational Number

Worksheet on Properties of Multiplication of Rational Numbers

Worksheet on Division of Rational Numbers

Worksheet on Properties of Division of Rational Numbers

Worksheet on Finding Rational Numbers between Two Rational Numbers

Worksheet on Word Problems on Rational Numbers

Worksheet on Operations on Rational Expressions

Objective Questions on Rational Numbers