Comparison of Rational Numbers

We will learn the comparison of rational numbers. We know how to compare two integers and also two fractions. We know that every positive integer is greater than zero and every negative integer is less than zero. Also every positive integer is greater than every negative integer.

Similar to the comparison of integers, we have the following facts about how to compare the rational numbers.

(i) Every positive rational number is greater than 0. 

(ii) Every negative rational number is less than 0.

(iii) Every positive rational number is greater than every negative rational number. 

(iv) Every rational number represented by a point on the number line is greater than every rational number represented by points on its left. 

(v) Every rational number represented by a point on the number line is less than every rational number represented by paints on its right.

How to compare the two rational numbers?

In order to compare any two rational numbers, we can use the following steps:

Step I: Obtain the given rational numbers.

Step II: Write the given rational numbers so that their denominators are positive.

Step III: Find the LCM of the positive denominators of the rational numbers obtained in step II.

Step IV: Express each rational number (obtained in step II) with the LCM (obtained in step III) as common denominator.

Step V: Compare the numerators of rational numbers obtained in step having greater numerator is the greater rational number.


Solved examples on comparison of rational numbers:

1. Which of the two rational numbers \(\frac{3}{5}\) and \(\frac{-2}{3}\) is greater?

Solution:

Clearly \(\frac{3}{5}\) is a positive rational number and \(\frac{-2}{3}\) is a negative rational number. We know that every positive rational number is greater than every negative rational number.

Therefore, \(\frac{3}{5}\) > \(\frac{-2}{3}\).


2. Which of the numbers \(\frac{3}{-4}\) and \(\frac{-5}{6}\) is greater?

Solution:

First we write each of the given numbers with positive denominator.

One number = \(\frac{3}{-4}\) = \(\frac{3  ×  (-1)}{(-4)  ×  (-1)}\)  = \(\frac{-3}{4}\).

The other number = \(\frac{-5}{6}\).

L.C.M. of 4 and 6 = 12

Therefore, \(\frac{-3}{4}\) = \(\frac{(-3)  ×  3}{4  ×  3}\) = \(\frac{-9}{12}\) and \(\frac{-5}{6}\) = \(\frac{(-5)  ×  2}{6  ×  2}\) = \(\frac{-10}{12}\)

Clearly, \(\frac{-9}{12}\) > \(\frac{-10}{12}\)

Hence, \(\frac{3}{-4}\) > \(\frac{-5}{6}\).


3. Which of the two rational numbers \(\frac{5}{7}\) and \(\frac{3}{5}\) is greater?

Solution:

Clearly, denominators o f the given rational numbers are positive. The denominators are 7 and 5. The LCM of 7 and 5 is 35. So, we first express each rational number with 35 as common denominator.

Therefore, \(\frac{5}{7}\) = \(\frac{5  ×  7}{7  ×  7}\) = \(\frac{25}{49}\) and \(\frac{3}{5}\) = \(\frac{3  ×  7}{5  ×  7}\) = \(\frac{21}{35}\)

Now, we compare the numerators of these rational numbers.

Therefore, 25 > 21

⇒ \(\frac{25}{49}\) > \(\frac{21}{35}\) ⇒ \(\frac{5}{7}\) > \(\frac{3}{5}\).


4. Write of the two rational numbers \(\frac{-4}{9}\) and \(\frac{5}{-12}\) is greater?

Solution:

First we write each one of the given rational numbers with positive denominator.

Clearly, denominator of \(\frac{-4}{9}\) is positive. The denominator of \(\frac{5}{-12}\) is negative.

So, we express it with positive denominator as follows:

\(\frac{5}{-12}\) = \(\frac{5  ×  (-1)}{(-12)  ×  (-1)}\) = \(\frac{-5}{12}\), [Multiplying the numerator and denominator by -1]

Now, LCM of denominators 9 and 12 is 36.

We write the rational numbers so that they have a common denominator 36 as follows:

\(\frac{-4}{9}\) = \(\frac{(-4)  ×  4}{9  ×  4}\)  = \(\frac{-16}{36}\) and, \(\frac{-5}{12}\) = \(\frac{(-5)  ×  3}{12  ×  3}\) = \(\frac{-15}{36}\)

Therefore, -15 > -16 ⇒ \(\frac{-15}{36}\) > \(\frac{-16}{36}\) ⇒ \(\frac{-5}{12}\) > \(\frac{-4}{9}\) ⇒ \(\frac{5}{-12}\) > \(\frac{-4}{9}\).

Rational Numbers

Introduction of Rational Numbers

What is Rational Numbers?

Is Every Rational Number a Natural Number?

Is Zero a Rational Number?

Is Every Rational Number an Integer?

Is Every Rational Number a Fraction?

Positive Rational Number

Negative Rational Number

Equivalent Rational Numbers

Equivalent form of Rational Numbers

Rational Number in Different Forms

Properties of Rational Numbers

Lowest form of a Rational Number

Standard form of a Rational Number

Equality of Rational Numbers using Standard Form

Equality of Rational Numbers with Common Denominator

Equality of Rational Numbers using Cross Multiplication

Comparison of Rational Numbers

Rational Numbers in Ascending Order

Rational Numbers in Descending Order

Representation of Rational Numbers on the Number Line

Rational Numbers on the Number Line

Addition of Rational Number with Same Denominator

Addition of Rational Number with Different Denominator

Addition of Rational Numbers

Properties of Addition of Rational Numbers

Subtraction of Rational Number with Same Denominator

Subtraction of Rational Number with Different Denominator

Subtraction of Rational Numbers

Properties of Subtraction of Rational Numbers

Rational Expressions Involving Addition and Subtraction

Simplify Rational Expressions Involving the Sum or Difference

Multiplication of Rational Numbers

Product of Rational Numbers

Properties of Multiplication of Rational Numbers

Rational Expressions Involving Addition, Subtraction and Multiplication

Reciprocal of a Rational  Number

Division of Rational Numbers

Rational Expressions Involving Division

Properties of Division of Rational Numbers

Rational Numbers between Two Rational Numbers

To Find Rational Numbers






8th Grade Math Practice 

From Comparison of Rational Numbers to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. Worksheet on Addition of Mass | Word problems on Addition of Mass

    Nov 13, 24 10:24 AM

    Practice the third grade math worksheet on addition of mass/weight. This sheet provides different types of questions where you need to arrange the values of mass under different columns

    Read More

  2. Worksheet on Addition of Length | Word Problems on Addition of Length

    Nov 13, 24 09:23 AM

    Practice the third grade math worksheet on addition of length. This sheet provides different types of questions where you need to arrange the values of length under different columns to find their sum

    Read More

  3. Addition of Mass |Add the Different Units of Mass |Worked-out Examples

    Nov 12, 24 01:36 PM

    Adding Weight
    In addition of mass we will learn how to add the different units of mass or weight together. While adding we need to follow that the units of mass i.e., kilogram and gram are converted into grams

    Read More

  4. Measuring Mass | Addition and Subtraction of Mass | Measure of Mass

    Nov 12, 24 12:07 PM

    Standard Units to Measure Weight
    We will discuss about measuring mass. We know the vegetable seller is weighing potatoes in kilogram. The goldsmith is weighing a ring in grams. The wheat bags are weighing in quintals.

    Read More

  5. Subtraction of Length | Learn How the Values of Length are Arranged

    Nov 11, 24 02:08 PM

    Subtraction of Length
    The process of subtraction of units of length is exactly similar to that of subtraction of ordinary numbers. Learn how the values of length are arranged in different columns for the subtraction of len…

    Read More

Rational Numbers - Worksheets

Worksheet on Rational Numbers

Worksheet on Equivalent Rational Numbers

Worksheet on Lowest form of a Rational Number

Worksheet on Standard form of a Rational Number

Worksheet on Equality of Rational Numbers

Worksheet on Comparison of Rational Numbers

Worksheet on Representation of Rational Number on a Number Line

Worksheet on Adding Rational Numbers

Worksheet on Properties of Addition of Rational Numbers

Worksheet on Subtracting Rational Numbers

Worksheet on Addition and Subtraction of Rational Number

Worksheet on Rational Expressions Involving Sum and Difference

Worksheet on Multiplication of Rational Number

Worksheet on Properties of Multiplication of Rational Numbers

Worksheet on Division of Rational Numbers

Worksheet on Properties of Division of Rational Numbers

Worksheet on Finding Rational Numbers between Two Rational Numbers

Worksheet on Word Problems on Rational Numbers

Worksheet on Operations on Rational Expressions

Objective Questions on Rational Numbers