Subtraction of Mass

In subtraction of mass we will learn how to find the difference between the units of mass or weight. While subtracting we need to follow that the units of mass i.e., kilogram and gram are converted into grams before subtraction and then follow the simple subtraction process.

We can subtract units of mass like ordinary numbers.

We will learn two different methods to solve subtraction using the standard unit and smaller unit of mass. Students can practice both the methods.

(i) Subtracting units with conversion into gram

(ii) Subtracting units without conversion into gram

Worked-out examples on subtraction of mass:

1. Subtract 11 kg 460 g from 25 kg 765 g

Solution:

Method I: (with conversion into gram):

We know, 1 kg = 1000 grams

Now kg and g are converted into grams before doing subtraction and then we need to follow the simple subtraction process.

11 kg 460 g = (11 × 1000) g + 460 g = 11000 g + 460 g = 11460 grams

25 kg 765 g = (25 × 1000) g + 765 g = 25000 g + 765 g = 25765 grams

Now sum,

             2 5 7 6 5  g

        -   1 1 4 6 0  g

             1 4 3 0 5  g

                     = 14 kg 305 g

Therefore, 25 kg 765 g - 11 kg 460 g = 11 kg 305 g 


Method II: (without conversion into gram):

Here kg and g are arranged in different columns and then added like ordinary numbers.

Follow the steps:

(i) kg and g are arranged in columns

(ii) 765 g - 460 g = 305 g

(iii) 25 kg - 11 kg = 14 kg

        kg       g

        25     765

    -   11     460

        14     305

              = 14 kg 305 g

Therefore, difference of 11 kg 460 g from 25 kg 765 g = 14 kg 305 g 


2. Subtract 24 kg 565 g from 45 kg 225 g

Solution:

Method I: (with conversion into gram):

We know, 1 kg = 1000 grams

Now kg and g are converted into grams before doing subtraction and then we need to follow the simple subtraction process.

24 kg 565 g = (24 × 1000) g + 565 g = 24000 g + 565 g = 24565 grams

45 kg 225 g = (45 × 1000) g + 225 g = 45000 g + 225 g = 45225 grams

Now sum,

             45225 g

          -  24565
g

             20660 g

                         = 20 kg 660 g

Therefore, 45 kg 225 g - 24 kg 565 g = 20 kg 660 g 


Method II: (without conversion into gram):

Here kg and g are arranged in different columns and then added like ordinary numbers.

Follow the steps:

(i) kg and g are arranged in columns

(ii) 225 g < 565 g, then 225 g - 565 g, so 1 kg from 45 kg is borrowed and added to 225 g

1 kg + 225 g = 1000 g + 225 g = 1225 g

1225 g - 565 g = 660 ml

(iii) 45 kg reduce into 44 kg

44 kg - 24 kg = 20 kg

        kg       g

        45     225

    -   24     565

        20     660

             = 20 kg 660 g

Therefore, difference of 24 kg 565 g from 45 kg 225 g = 20 kg 660 g 


3. Subtract  21 kg 370 g from 37 kg 675 g without conversion into gram.

Solution:

Here kg and g are arranged in different columns and then added like ordinary numbers (without conversion into gram).

        kg       g

        37     675

    -   21     370

        16     305

              = 16 kg 305 g

Therefore, difference of 21 kg 370 g from 37 kg 675 g = 16 kg 305 g 


4. Subtract 44 kg 900 g from 105 kg 60 g.

Solution:

Arrange the numbers vertically.

First, subtract the grams.

As 900 g > 60 g, we cannot subtract.

We borrow 1 kg from 105 kg. So, 105 kg becomes 104 kg and 60 grams becomes 1000 + 60 = 1060 g.

Subtract 900 g from 1060 g.

1060 – 900 = 160

Write 160 under grams column.

Subtraction of Mass

Subtract kilograms. 104 – 44 = 60 kg

Write 60 under kilograms column.


To subtract weights, write the number of kg and gin separate columns the subtract like ordinary numbers, starting from right.

5. Subtract 22 kg 70 g from 46 kg 90 g.

Solution:

              kg        g

             4 6      9 0

        -   2 2       7 0

            2 4       2 0


Answer: 24 kg 20 g


6. Subtract 682 kg 541 g from 325 kg 193 g.

Solution:

                 kg                g

                       7   12        4   13   11

             6   8   2       5   4   1

        -   3    2   5       1   9   3

            3    5   7       3   4   8


Answer: 357 kg 348 g


7. Subtract 30 kg 664 g from 65 kg 282 g

Solution:

30 kg 664 from 65 kg 282 g

65 kg 282 g - 30 kg 664

First subtract g here 282 < 664

So, we borrow 1 kg from 65 kg,

leaving behind 64 kg.

Also, 1 kg = 1000 g

Thus, 65 kg 282 g becomes 64 kg 1282 g

Subtract 664 from 1282.

i.e., 1282 - 664 = 618 g

Now subtract kg = (64 kg - 30 kg)

                         = 34 kg

Subtraction of Measurement of Weight

Therefore, the difference of the mass = 34 kg 618 g.


The above problems on subtraction of mass will help the students to practice the worksheet on subtracting the different units with conversion or without conversion.

Subtraction of Weight

Questions and Answers on Subtraction of Mass:

1. Subtract the given weights:

(i) 76 kg 142 g – 24 kg 031 g

(ii) 90 g 622 mg – 48 g 503 mg

(iii) 62 kg 579 g – 51 kg 560 g

(iv) 60 g 222 mg – 34 g 083 mg

(v) 80 kg 885 g – 47 kg 000 g

(vi) 100 kg 529 g – 36 kg 610 g

(vii) 27 g 021 mg – 9 g 300 mg

(viii) 321 kg 450 g – 50 kg 290 g

(ix) 560 kg 000 g – 110 kg 850 g


Answers:

1. (i) 52 kg 111 g

(ii) 42 g 119 mg

(iii) 11 kg 19 g

(iv) 26 g 139 mg

(v) 33 kg 885 g

(vi) 63 kg 919 g

(vii) 17 g 721 mg

(viii) 271 kg 160 g

(ix) 449 kg 150 g


2. Subtract the following:

(i)

          kg          g

          68         97

     -    12         67 

     _____________

(ii)

          kg          g

          49         70

     -    26         50 

     _____________

(iii)

          kg          g

          17         74

     -    15         30 

     _____________

(iv)

          kg          g

          24         60

     -    12         23 

     _____________

(v)

          kg           g

          52         800

     -    19         485 

     ______________

(vi)

          kg           g

          73         423

     -    38         365 

     ______________

(vii)

          kg           g

          62         125

     -    47         496 

     ______________

(viii)

           kg           g

          403        320

     -    304        743 

     ______________

(ix)

           kg            g

          247         400

     -    153         575 

     ______________

(x)

           kg           g

          490        200

     -    296        150 

     ______________

(xi)

           kg            g

          631         189

     -    518         976 

     ______________

(xii)

           kg           g

          350        875

     -    114        109 

     ______________

(xiii)

           kg           g

          761         02

     -    253         37 

     ______________

(xiv)

          kg          g

          80        500

     -    60        495 

     _____________

(xv)

           kg            g

          518         210

     -    109         625 

     ______________

(xvi)

           kg          g

          610        582

     -    108        644 

     ______________


Answer:

2. (i) 56 kg 30 g

(ii) 23 kg 20 g

(iii) 2 kg 44 g

(iv) 12 kg 37 g

(v) 33 kg 315 g

(vi) 35 kg 58 g

(vii) 14 kg 629 g

(viii) 98 kg 577 g 

(ix) 93 kg 825 g
 
(x) 194 kg 50 g

(xi) 112 kg 213 g

(xii) 236 kg 766 g

(xiii) 507 kg 965 g

(xiv) 20 kg 5 g

(xv) 408 kg 585 g

(xvi) 501 kg 938 g

You might like these

Related Concepts

What is Mass?

Conversion of Standard Unit of Mass

Addition of Mass





3rd Grade Math Worksheets

3rd Grade Math Lessons

From Subtraction of Mass to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Expanded form of Decimal Fractions |How to Write a Decimal in Expanded

    Jul 22, 24 03:27 PM

    Expanded form of Decimal
    Decimal numbers can be expressed in expanded form using the place-value chart. In expanded form of decimal fractions we will learn how to read and write the decimal numbers. Note: When a decimal is mi…

    Read More

  2. Worksheet on Decimal Numbers | Decimals Number Concepts | Answers

    Jul 22, 24 02:41 PM

    Worksheet on Decimal Numbers
    Practice different types of math questions given in the worksheet on decimal numbers, these math problems will help the students to review decimals number concepts.

    Read More

  3. Decimal Place Value Chart |Tenths Place |Hundredths Place |Thousandths

    Jul 21, 24 02:14 PM

    Decimal place value chart
    Decimal place value chart are discussed here: The first place after the decimal is got by dividing the number by 10; it is called the tenths place.

    Read More

  4. Thousandths Place in Decimals | Decimal Place Value | Decimal Numbers

    Jul 20, 24 03:45 PM

    Thousandths Place in Decimals
    When we write a decimal number with three places, we are representing the thousandths place. Each part in the given figure represents one-thousandth of the whole. It is written as 1/1000. In the decim…

    Read More

  5. Hundredths Place in Decimals | Decimal Place Value | Decimal Number

    Jul 20, 24 02:30 PM

    Hundredths Place in Decimals
    When we write a decimal number with two places, we are representing the hundredths place. Let us take plane sheet which represents one whole. Now, we divide the sheet into 100 equal parts. Each part r…

    Read More