# Subtraction of Capacity

In subtraction of capacity we will learn how to find the difference between the units of capacity and volume. While subtracting we need to follow that the units of capacity i.e., liter and milliliter are converted into milliliters before subtraction and then follow the simple subtraction process.

We will learn two different methods to solve subtraction using the standard unit and smaller unit of capacity. Students can practice both the methods.

(i) Subtracting units with conversion into milliliter

(ii) Subtracting units without conversion into milliliter

We can subtract units of capacity measures just like ordinary numbers.

Worked-out examples on subtraction of capacity:

1. Subtract 6 l 250 ml from 15 l 500 ml

Solution:

Method I: (with conversion into milliliter):

We know, 1 liter = 1000 milliliters

Now liter and milliliter are converted into milliliters before doing subtraction and then we need to follow the simple subtraction process.

6 l 250 ml = (6 × 1000) ml + 250 ml = 6000 ml + 250 ml = 6250 milliliters

15 l 500 ml = (15 × 1000) ml + 500 ml = 15000 ml + 500 ml = 15500 milliliters

Now difference is,

15500 ml

-   6250 ml

9250 ml

= 9 l 250 ml

Therefore, 15 l 500 ml - 6 l 250 ml = 9 l 250 ml

Method II: (without conversion into milliliter):

Here liter and milliliter are arranged in different columns and then subtract like ordinary numbers.

(i) Liter and milliliter are arranged in columns

(ii) 500 ml - 250 ml = 250 ml

(iii) 15 l - 6 l = 9 l

l       ml
15     500

-    6     250

9     250

= 9 l 250 ml

Therefore, difference of 6 l 250 ml from 15 l 500 ml = 9 l 250 ml

2. Subtract 6 l 650 ml from 18 l 875 ml

Solution:

Method I: (with conversion into milliliter):

We know, 1 liter = 1000 milliliters

Now liter and milliliter are converted into milliliters before doing subtraction and then we need to follow the simple subtraction process.

6 l 650 ml = (6 × 1000) ml + 650 ml = 6000 ml + 650 ml = 6650 milliliters

18 l 875 ml = (18 × 1000) ml + 875 ml = 18000 ml + 875 ml = 18875 milliliters

Now difference is,

1 8 8 7 5 ml

-     6 6 5 0 ml

1 2 2 2 5 ml

= 12 l 225 ml

Therefore, 18 l 875 ml - 6 l 650 ml = 12 l 225 m

Method II: (without conversion into milliliter):

Here liter and milliliter are arranged in different columns and then subtract like ordinary numbers.

(i) Liter and milliliter are arranged in columns

(ii) 875 ml - 650 ml = 225 ml

(iii) 18 l - 6 l = 12 l

l       ml
18     875

-    6     650

12     225

= 12 l 225 ml

Therefore, difference of 6 l 650 ml from 18 l 875 ml = 12 l 225 ml

More solved examples on subtraction of capacity where the method is mentioned in the given question.

3. Subtract 7 l 850 ml from 19 l 375 ml without conversion into milliliter.

Solution:

Without conversion into milliliter here liter and milliliter are arranged in different columns and then subtract like ordinary numbers.

(i) Liter and milliliter are arranged in columns

(ii) 850 ml - 375 ml, so 1 l from 19 l is borrowed and added to 375 ml

l + 375 ml = 1375 ml

1375 ml - 850 ml = 525 ml

(iii) 19 l reduce into 18 l

18 l - 7 l = 11 l

l        ml
1      1000
19      375

-    7      850
11      525

= 11 l 525 ml

Therefore, difference of 7 l 850 ml from 19 l 375 ml = 11 l 525 ml

4. Subtract 4 l 250 ml from 13 l 750 ml with conversion into milliliter.

Solution:

With conversion into milliliter we will do simple subtraction.

We know, 1 liter = 1000 milliliters

Now liter and milliliter are converted into milliliters before doing subtraction and then we need to follow the simple subtraction process.

l 250 ml = (4 × 1000) ml + 250 ml = 4000 ml + 250 ml = 4250 milliliters

13 l 750 ml = (13 × 1000) ml + 750 ml = 13000 ml + 750 ml = 13750 milliliters

Now difference is,

13750 ml

-   4250 ml

9500 ml

= 9 l 500 ml

Therefore, 13 l 750 ml - 4 l 250 ml = 9 l 500 ml

5. Subtract 76 l 980 ml from 101 l 300 ml.

Solution:

 Arrange the numbers vertically.First subtract the mlSince, 980 ml > 300 ml, we cannot subtract. We borrow 1 l and subtract 980 from 1300.1300 – 980 = 320 ml, write 320 under ml column.Subtract liters.100 – 76 = 24 lWrite 24 under liters column.

Hence, 101 l 300 ml – 76 l 980 ml = 24 l 320 ml

To subtract, write the number of mℓ and ℓ in separate columns then subtract like ordinary numbers starting from the right.

6. Subtract 22 ℓ 20 mℓ from 45 ℓ 60 mℓ.

ℓ      mℓ

45     60

-  22      20

23     40

7. Subtract 268 ℓ 994 mℓ from 866 ℓ 793 mℓ.

ℓ              mℓ

7   15  15       16  18  13

8   6   6      7   9   3

-  2   6   8       9   9   4

___5   9   7      7   9    9

8. Find the difference of the capacity: 15 ℓ 624 mℓ from 43 ℓ 312 mℓ.

Solution:

 15 ℓ 624 mℓ from 43 ℓ 312 mℓ43 ℓ 312 mℓ - 15 ℓ 624 mℓFirst subtract mℓ; but 312 < 624So, we borrow 1 ℓ from 43 ℓ, leaving behind 42 ℓThus, 43 ℓ 312 mℓ becomes 42 ℓ 1312 mℓSubtract 624 from 1312i.e., 1312 -624 = 688 mlNow, subtract   = (42 ℓ - 15 ℓ) = 27 ℓ

Required difference of the capacity = 27 ℓ 688 mℓ

Word problems on subtraction of capacity and volume:

9. Olivia purchased 7 l 500 ml of milk. She consumed 3 l 700 ml of milk during the day. How much milk was left?

Solution:

Quantity of milk purchased                         =             7 l 500 ml

Quantity of milk consumed                         =             3 l 700 ml

Therefore, quantity of milk left                   =             3 l 800 ml

The above problems on subtraction of capacity and volume will help the students to practice the worksheet on subtracting the different units with conversion or without conversion.

Worksheet on Subtraction of Capacity:

I. Subtract the following:

(i) 24 l 445 ml – 14 l 134 ml

(ii) 65 l 109 ml – 42 l 813 ml

(iii) 74 l 340 ml – 51 l 250 ml

(iv) 90 l 000 ml – 42 l 056 ml

(v) 81 l 550 ml - 62 l 125 ml

(vi) 72 l 160 ml – 54 l 320 ml

I. (i) 10 l 311 ml

(ii) 22 l 296 ml

(iii) 23 l 90 ml

(iv) 47 l 944 ml

(v) 19 l 425 ml

(vi) 17 l 840 ml

II. Subtract the following:

 (i) mℓ       ℓ              93     55         -   61     40 _             _______ _ (ii) mℓ       ℓ              47     08         -   16     00 _             _______ _
 (iii) mℓ       ℓ              36     67         -   22     35 _             _______ _ (iv) mℓ       ℓ              92     92         -   71     31 _             _______ _
 (v) mℓ       ℓ              54     95         -   21     70 _             _______ _ (vi) mℓ       ℓ              36     39         -   25     08 _             _______ _
 (vii) mℓ       ℓ              89     72         -   68     20 _             _______ _ (viii) mℓ       ℓ              84     97         -   30     75 _             _______ _
 (ix) mℓ       ℓ            190     975         -   84     750              _______ _ (x) mℓ       ℓ            403     320        -  159     456              _______ _
 (xi) mℓ       ℓ            920     975        -  700     716              _______ _ (xii) mℓ       ℓ            400     925        -  200     746              _______ _
 (xiii) mℓ       ℓ            513     777        -  218     969              _______ _ (xiv) mℓ       ℓ            403     320        -  159     456              _______ _
 (xv) mℓ       ℓ            243     765        -  142     762              _______ _ (xvi) mℓ       ℓ            780     385        -  599     462              _______ _

II. (i) 32 ℓ 15 mℓ

(ii) 31 ℓ 8 mℓ

(iii) 14 ℓ 32 mℓ

(iv) 21 ℓ 61 mℓ

(v) 33 ℓ 25 mℓ

(vi) 11 ℓ 31 mℓ

(vii) 21 ℓ 52 mℓ

(viii) 54 ℓ 22 mℓ

(ix) 106 ℓ 225 mℓ

(x) 243 ℓ 864 mℓ

(xi) 220 ℓ 259 mℓ

(xii) 200 ℓ 179 mℓ

(xiii) 294 ℓ 808 mℓ

(xiv) 243 ℓ 864 mℓ

(xv) 101 ℓ 3 mℓ

(xvi) 180 ℓ 923 mℓ

## You might like these

• ### Mental Math on Time | 4th Grade Time Worksheet | Tricks | Techniques

In mental math on time, we will solve different types of problems on reading time to the nearest minutes, reading time to the exact minutes, use of a.m. and p.m., 24-hours clock, days in a year and calculating days.

• ### Telling Time in a.m. and p.m. | Antemeridian and Postmeridian|Examples

The clock shows time in 12 hour cycle. The first cycle of the hour hand completes at 12 o’clock midday or noon. The second cycle of the hour hand completes at 12 o’clock midnight. ‘a.m.’ and ‘p.m.’ are used to represent the time of the day. ‘a.m.’ stands for ante meridiem,

• ### Different Ways of Reading Time | Many Ways to Read Time | Telling Time

What are the different ways of reading time? There are many ways to read time: (a) When hour-hand is exactly at any number and minute-hand is at 12, we read the time in full hours. If hour hand is at

• ### Quarter Past and Quarter To | Quarter Past Hour | Quarter to Next Hour

The hands of clock move from left to right. This is called the clock wise motion. When the minute hand is on the right side of the clock, it shows the number of minutes past the hour. When the minute hand is on the left side of the clock, it shows the number of minutes to

• ### Mental Math on Measurement | Mental Maths Questions with Answers

In mental math on measurement we will solve different type of problems on conversion of length, conversion of mass and conversion of capacity.

• ### 4th Grade Measurement Worksheet | Free Math Worksheet with Answers

In 4th grade measurement worksheet we will solve different types of problems on measurement of length, measurement of capacity, measurement of mass, expressing one unit in terms of another, addition of length, subtraction of length, addition of mass, subtraction of mass

• ### Worksheet on Measurement | Problems on Measurement | Homework |Answers

In worksheet on measurement we will solve 27 different types of questions.1. John bought 27.5 m of cloth. How many cm of cloth did he buy? 2. Convert a distance of 20 km to metres. 3. Convert 98 km

• ### Addition of Capacity | Add the Different Units of Capacity | Examples

In addition of capacity we will learn how to add the different units of capacity and volume together. While adding we need to follow that the units of capacity i.e., liter and milliliter

• ### Subtraction of Mass | Difference Between the Units of Mass | Examples

In subtraction of mass we will learn how to find the difference between the units of mass or weight. While subtracting we need to follow that the units of mass i.e., kilogram and gram

• ### Addition of Mass |Add the Different Units of Mass |Worked-out Examples

In addition of mass we will learn how to add the different units of mass or weight together. While adding we need to follow that the units of mass i.e., kilogram and gram are converted into grams

• ### Subtraction of Length | Learn How the Values of Length are Arranged

The process of subtraction of units of length is exactly similar to that of subtraction of ordinary numbers. Learn how the values of length are arranged in different columns for the subtraction of length. 1. Subtract 12 m 36 cm from 48 m 57 cm Solution:

• ### Addition of Length | Learn How the Values of Length are Arranged

The process of addition of units of length is exactly similar to addition of ordinary numbers. Learn how the values of length are arranged in different columns for the addition of length. 1. Add 15 m 18 cm and 16 m 22 cm

• ### Worksheet on Measurement of Length | Exercise Sheet on Measurements

In worksheet on measurement of length, all grade students can practice the questions on units for measuring length.

• ### Worksheet on Measurement of Capacity | Measuring Capacity Worksheets

In worksheet on measurement of capacity, all grade students can practice the questions on units for measuring capacity. This exercise sheet on measurements can be practiced by the students to get more

• ### Conversion of Standard Unit of Capacity | Unit of Capacity | Problems

For the conversion of standard unit of capacity it’s very important to know the relationship between the different units of capacity. We know, one litre = 1000 millilitre 1000 millilitre = 1 litre

Related Concepts

Conversion of Standard Unit of Capacity

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

## Recent Articles

1. ### Worksheet on Word Problems on Fractions | Fraction Word Problems | Ans

Jul 16, 24 02:20 AM

In worksheet on word problems on fractions we will solve different types of word problems on multiplication of fractions, word problems on division of fractions etc... 1. How many one-fifths

2. ### Word Problems on Fraction | Math Fraction Word Problems |Fraction Math

Jul 16, 24 01:36 AM

In word problems on fraction we will solve different types of problems on multiplication of fractional numbers and division of fractional numbers.

3. ### Worksheet on Add and Subtract Fractions | Word Problems | Fractions

Jul 16, 24 12:17 AM

Recall the topic carefully and practice the questions given in the math worksheet on add and subtract fractions. The question mainly covers addition with the help of a fraction number line, subtractio…

4. ### Comparison of Like Fractions | Comparing Fractions | Like Fractions

Jul 15, 24 03:22 PM

Any two like fractions can be compared by comparing their numerators. The fraction with larger numerator is greater than the fraction with smaller numerator, for example $$\frac{7}{13}$$ > \(\frac{2…

5. ### Worksheet on Reducing Fraction | Simplifying Fractions | Lowest Form

Jul 15, 24 03:17 PM

Practice the questions given in the math worksheet on reducing fraction to the lowest terms by using division. Fractional numbers are given in the questions to reduce to its lowest term.