Subtraction of Capacity

In subtraction of capacity we will learn how to find the difference between the units of capacity and volume. While subtracting we need to follow that the units of capacity i.e., liter and milliliter are converted into milliliters before subtraction and then follow the simple subtraction process.

We will learn two different methods to solve subtraction using the standard unit and smaller unit of capacity. Students can practice both the methods.

(i) Subtracting units with conversion into milliliter

(ii) Subtracting units without conversion into milliliter


We can subtract units of capacity measures just like ordinary numbers.

Worked-out examples on subtraction of capacity:

1. Subtract 6 l 250 ml from 15 l 500 ml

Solution:

Method 1 (with conversion into milliliter):

We know, 1 liter = 1000 milliliters

Now liter and milliliter are converted into milliliters before doing subtraction and then we need to follow the simple subtraction process.

6 l 250 ml = (6 × 1000) ml + 250 ml = 6000 ml + 250 ml = 6250 milliliters

15 l 500 ml = (15 × 1000) ml + 500 ml = 15000 ml + 500 ml = 15500 milliliters

Now difference is, 

             15500 ml

          -   6250 ml
              9250 ml

                         = 9 l 250 ml

Therefore, 15 l 500 ml - 6 l 250 ml = 9 l 250 ml


Method 2 (without conversion into milliliter):

Here liter and milliliter are arranged in different columns and then subtract like ordinary numbers.

Follow the steps:

(i) Liter and milliliter are arranged in columns

(ii) 500 ml - 250 ml = 250 ml

(iii) 15 l - 6 l = 9 l

              l       ml
            15     500

        -    6     250
             9     250

                        = 9 l 250 ml

Therefore, difference of 6 l 250 ml from 15 l 500 ml = 9 l 250 ml 


2. Subtract 6 l 650 ml from 18 l 875 ml

Solution:

Method 1 (with conversion into milliliter):

We know, 1 liter = 1000 milliliters

Now liter and milliliter are converted into milliliters before doing subtraction and then we need to follow the simple subtraction process.

6 l 650 ml = (6 × 1000) ml + 650 ml = 6000 ml + 650 ml = 6650 milliliters

18 l 875 ml = (18 × 1000) ml + 875 ml = 18000 ml + 875 ml = 18875 milliliters

Now difference is,                        18875 ml



                  -    6650 ml
                      12225 ml

                                = 12 l 225 ml

Therefore, 18 l 875 ml - 6 l 650 ml = 12 l 225 m


Method 2 (without conversion into milliliter):

Here liter and milliliter are arranged in different columns and then subtract like ordinary numbers.

Follow the steps:

(i) Liter and milliliter are arranged in columns

(ii) 875 ml - 650 ml = 225 ml

(iii) 18 l - 6 l = 12 l

                  l       ml
                18     875

             -    6     650
                 12     225

                            = 12 l 225 ml

Therefore, difference of 6 l 650 ml from 18 l 875 ml = 12 l 225 ml 

 

More solved examples on subtraction of capacity where the method is mentioned in the given question.

3. Subtract 7 l 850 ml from 19 l 375 ml without conversion into milliliter.

Solution:

Without conversion into milliliter here liter and milliliter are arranged in different columns and then subtract like ordinary numbers.

Follow the steps:

(i) Liter and milliliter are arranged in columns

(ii) 850 ml - 375 ml, so 1 l from 19 l is borrowed and added to 375 ml

l + 375 ml = 1375 ml

1375 ml - 850 ml = 525 ml

(iii) 19 l reduce into 18 l

18 l - 7 l = 11 l

                  l        ml
                     1      1000
                19      375

             -    7      850
                11      525

                             = 11 l 525 ml

Therefore, difference of 7 l 850 ml from 19 l 375 ml = 11 l 525 ml 


4. Subtract 4 l 250 ml from 13 l 750 ml with conversion into milliliter.

Solution:

With conversion into milliliter we will do simple subtraction.

We know, 1 liter = 1000 milliliters

Now liter and milliliter are converted into milliliters before doing subtraction and then we need to follow the simple subtraction process.

l 250 ml = (4 × 1000) ml + 250 ml = 4000 ml + 250 ml = 4250 milliliters

13 l 750 ml = (13 × 1000) ml + 750 ml = 13000 ml + 750 ml = 13750 milliliters

Now difference is, 

                13750 ml

             -   4250 ml
                 9500 ml

                             = 9 l 500 ml

Therefore, 13 l 750 ml - 4 l 250 ml = 9 l 500 ml


5. Subtract 76 l 980 ml from 101 l 300 ml.

Solution:

Arrange the numbers vertically.

First subtract the ml

Since, 980 ml > 300 ml, we cannot subtract. We borrow 1 l and subtract 980 from 1300.

1300 – 980 = 320 ml, write 320 under ml column.

Subtract liters.

100 – 76 = 24 l

Write 24 under liters column.

Subtraction of Capacity

Hence, 101 l 300 ml – 76 l 980 ml = 24 l 320 ml


To subtract, write the number of mℓ and ℓ in separate columns then subtract like ordinary numbers starting from the right.

6. Subtract 22 ℓ 20 mℓ from 45 ℓ 60 mℓ.

               ℓ      mℓ

             45     60

         -  22      20

             23     40

Answer: 23 ℓ 40 mℓ


7. Subtract 268 ℓ 994 mℓ from 866 ℓ 793 mℓ.

                     ℓ              mℓ

                   7   15  15       16  18  13

               8   6   6      7   9   3

           -  2   6   8       9   9   4

         ___5   9   7      7   9    9


Answer: 597 ℓ 799 mℓ


Word problems on subtraction of capacity and volume:

8. Olivia purchased 7 l 500 ml of milk. She consumed 3 l 700 ml of milk during the day. How much milk was left? 

Solution:

Quantity of milk purchased                         =             7 l 500 ml

Quantity of milk consumed                         =             3 l 700 ml

Therefore, quantity of milk left                   =             3 l 800 ml


The above problems on subtraction of capacity and volume will help the students to practice the worksheet on subtracting the different units with conversion or without conversion.


Questions and Answers on Subtraction of Capacity:

I. Subtract the following:

(i) 24 l 445 ml – 14 l 134 ml

(ii) 65 l 109 ml – 42 l 813 ml

(iii) 74 l 340 ml – 51 l 250 ml

(iv) 90 l 000 ml – 42 l 056 ml

(v) 81 l 550 ml - 62 l 125 ml

(vi) 72 l 160 ml – 54 l 320 ml


Answers:

I. (i) 10 l 311 ml

(ii) 22 l 296 ml

(iii) 23 l 90 ml

(iv) 47 l 944 ml

(v) 19 l 425 ml

(vi) 17 l 840 ml


II. Subtract the following:

(i)

             mℓ       ℓ

              93     55

         -   61     40 _

             _______ _

(ii)

             mℓ       ℓ

              47     08

         -   16     00 _

             _______ _

(iii)

             mℓ       ℓ

              36     67

         -   22     35 _

             _______ _

(iv)

             mℓ       ℓ

              92     92

         -   71     31 _

             _______ _

(v)

             mℓ       ℓ

              54     95

         -   21     70 _

             _______ _

(vi)

             mℓ       ℓ

              36     39

         -   25     08 _

             _______ _

(vii)

             mℓ       ℓ

              89     72

         -   68     20 _

             _______ _

(viii)

             mℓ       ℓ

              84     97

         -   30     75 _

             _______ _

(ix)

             mℓ       ℓ

            190     975

         -   84     750 

             _______ _

(x)

             mℓ       ℓ

            403     320

        -  159     456 

             _______ _

(xi)

             mℓ       ℓ

            920     975

        -  700     716 

             _______ _

(xii)

             mℓ       ℓ

            400     925

        -  200     746 

             _______ _

(xiii)

             mℓ       ℓ

            513     777

        -  218     969 

             _______ _

(xiv)

             mℓ       ℓ

            403     320

        -  159     456 

             _______ _

(xv)

             mℓ       ℓ

            243     765

        -  142     762 

             _______ _

(xvi)

             mℓ       ℓ

            780     385

        -  599     462 

             _______ _

Answer:

II. (i) 32 ℓ 15 mℓ

(ii) 31 ℓ 8 mℓ

(iii) 14 ℓ 32 mℓ

(iv) 21 ℓ 61 mℓ

(v) 33 ℓ 25 mℓ

(vi) 11 ℓ 31 mℓ

(vii) 21 ℓ 52 mℓ

(viii) 54 ℓ 22 mℓ

(ix) 106 ℓ 225 mℓ
 
(x) 243 ℓ 864 mℓ

(xi) 220 ℓ 259 mℓ

(xii) 200 ℓ 179 mℓ

(xiii) 294 ℓ 808 mℓ

(xiv) 243 ℓ 864 mℓ

(xv) 101 ℓ 3 mℓ

(xvi) 180 ℓ 923 mℓ

Related Concepts

Standard Unit of Capacity

Conversion of Standard Unit of Capacity

Addition of Capacity




3rd Grade Math Worksheets

3rd Grade Math Lessons

From Subtraction of Capacity to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Method of H.C.F. |Highest Common Factor|Factorization &Division Method

    Apr 13, 24 05:12 PM

    HCF by Short Division Method
    We will discuss here about the method of h.c.f. (highest common factor). The highest common factor or HCF of two or more numbers is the greatest number which divides exactly the given numbers. Let us…

    Read More

  2. Factors | Understand the Factors of the Product | Concept of Factors

    Apr 13, 24 03:29 PM

    Factors
    Factors of a number are discussed here so that students can understand the factors of the product. What are factors? (i) If a dividend, when divided by a divisor, is divided completely

    Read More

  3. Methods of Prime Factorization | Division Method | Factor Tree Method

    Apr 13, 24 01:27 PM

    Factor Tree Method
    In prime factorization, we factorise the numbers into prime numbers, called prime factors. There are two methods of prime factorization: 1. Division Method 2. Factor Tree Method

    Read More

  4. Divisibility Rules | Divisibility Test|Divisibility Rules From 2 to 18

    Apr 13, 24 12:41 PM

    Divisibility Rules
    To find out factors of larger numbers quickly, we perform divisibility test. There are certain rules to check divisibility of numbers. Divisibility tests of a given number by any of the number 2, 3, 4…

    Read More

  5. Even and Odd Numbers Between 1 and 100 | Even and Odd Numbers|Examples

    Apr 12, 24 04:22 PM

    even and odd numbers
    All the even and odd numbers between 1 and 100 are discussed here. What are the even numbers from 1 to 100? The even numbers from 1 to 100 are:

    Read More