Subtraction of Capacity

In subtraction of capacity we will learn how to find the difference between the units of capacity and volume. While subtracting we need to follow that the units of capacity i.e., liter and milliliter are converted into milliliters before subtraction and then follow the simple subtraction process.

We will learn two different methods to solve subtraction using the standard unit and smaller unit of capacity. Students can practice both the methods.

(i) Subtracting units with conversion into milliliter

(ii) Subtracting units without conversion into milliliter


We can subtract units of capacity measures just like ordinary numbers.

Worked-out examples on subtraction of capacity:

1. Subtract 6 l 250 ml from 15 l 500 ml

Solution:

Method I: (with conversion into milliliter):

We know, 1 liter = 1000 milliliters

Now liter and milliliter are converted into milliliters before doing subtraction and then we need to follow the simple subtraction process.

6 l 250 ml = (6 × 1000) ml + 250 ml = 6000 ml + 250 ml = 6250 milliliters

15 l 500 ml = (15 × 1000) ml + 500 ml = 15000 ml + 500 ml = 15500 milliliters

Now difference is, 

             15500 ml

          -   6250 ml

              9250 ml

                         = 9 l 250 ml

Therefore, 15 l 500 ml - 6 l 250 ml = 9 l 250 ml


Method II: (without conversion into milliliter):

Here liter and milliliter are arranged in different columns and then subtract like ordinary numbers.

Follow the steps:

(i) Liter and milliliter are arranged in columns

(ii) 500 ml - 250 ml = 250 ml

(iii) 15 l - 6 l = 9 l

              l       ml
            15     500

        -    6     250

             9     250

                        = 9 l 250 ml

Therefore, difference of 6 l 250 ml from 15 l 500 ml = 9 l 250 ml 


2. Subtract 6 l 650 ml from 18 l 875 ml

Solution:

Method I: (with conversion into milliliter):

We know, 1 liter = 1000 milliliters

Now liter and milliliter are converted into milliliters before doing subtraction and then we need to follow the simple subtraction process.

6 l 650 ml = (6 × 1000) ml + 650 ml = 6000 ml + 650 ml = 6650 milliliters

18 l 875 ml = (18 × 1000) ml + 875 ml = 18000 ml + 875 ml = 18875 milliliters

Now difference is,

                      1 8 8 7 5 ml

                  -     6 6 5 0 ml

                      1 2 2 2 5 ml

                                = 12 l 225 ml

Therefore, 18 l 875 ml - 6 l 650 ml = 12 l 225 m


Method II: (without conversion into milliliter):

Here liter and milliliter are arranged in different columns and then subtract like ordinary numbers.

Follow the steps:

(i) Liter and milliliter are arranged in columns

(ii) 875 ml - 650 ml = 225 ml

(iii) 18 l - 6 l = 12 l

                  l       ml
                18     875

             -    6     650

                 12     225

                            = 12 l 225 ml

Therefore, difference of 6 l 650 ml from 18 l 875 ml = 12 l 225 ml 

 

More solved examples on subtraction of capacity where the method is mentioned in the given question.

3. Subtract 7 l 850 ml from 19 l 375 ml without conversion into milliliter.

Solution:

Without conversion into milliliter here liter and milliliter are arranged in different columns and then subtract like ordinary numbers.

Follow the steps:

(i) Liter and milliliter are arranged in columns

(ii) 850 ml - 375 ml, so 1 l from 19 l is borrowed and added to 375 ml

l + 375 ml = 1375 ml

1375 ml - 850 ml = 525 ml

(iii) 19 l reduce into 18 l

18 l - 7 l = 11 l

                  l        ml
                     1      1000
                19      375

             -    7      850
                11      525

                             = 11 l 525 ml

Therefore, difference of 7 l 850 ml from 19 l 375 ml = 11 l 525 ml 


4. Subtract 4 l 250 ml from 13 l 750 ml with conversion into milliliter.

Solution:

With conversion into milliliter we will do simple subtraction.

We know, 1 liter = 1000 milliliters

Now liter and milliliter are converted into milliliters before doing subtraction and then we need to follow the simple subtraction process.

l 250 ml = (4 × 1000) ml + 250 ml = 4000 ml + 250 ml = 4250 milliliters

13 l 750 ml = (13 × 1000) ml + 750 ml = 13000 ml + 750 ml = 13750 milliliters

Now difference is, 

                13750 ml

             -   4250 ml

                 9500 ml

                             = 9 l 500 ml

Therefore, 13 l 750 ml - 4 l 250 ml = 9 l 500 ml


5. Subtract 76 l 980 ml from 101 l 300 ml.

Solution:

Arrange the numbers vertically.

First subtract the ml

Since, 980 ml > 300 ml, we cannot subtract. We borrow 1 l and subtract 980 from 1300.

1300 – 980 = 320 ml, write 320 under ml column.

Subtract liters.

100 – 76 = 24 l

Write 24 under liters column.

Subtraction of Capacity

Hence, 101 l 300 ml – 76 l 980 ml = 24 l 320 ml


To subtract, write the number of mℓ and ℓ in separate columns then subtract like ordinary numbers starting from the right.

6. Subtract 22 ℓ 20 mℓ from 45 ℓ 60 mℓ.

               ℓ      mℓ

             45     60

         -  22      20

             23     40

Answer: 23 ℓ 40 mℓ


7. Subtract 268 ℓ 994 mℓ from 866 ℓ 793 mℓ.

                     ℓ              mℓ

                   7   15  15       16  18  13

               8   6   6      7   9   3

           -  2   6   8       9   9   4

         ___5   9   7      7   9    9


Answer: 597 ℓ 799 mℓ


8. Find the difference of the capacity: 15 ℓ 624 mℓ from 43 ℓ 312 mℓ.

Solution:

15 ℓ 624 mℓ from 43 ℓ 312 mℓ

43 ℓ 312 mℓ - 15 ℓ 624 mℓ

First subtract mℓ; but 312 < 624

So, we borrow 1 ℓ from 43 ℓ, leaving behind 42 ℓ

Thus, 43 ℓ 312 mℓ becomes 42 ℓ 1312 mℓ

Subtract 624 from 1312

i.e., 1312 -624 = 688 ml

Now, subtract   = (42 ℓ - 15 ℓ) = 27 ℓ

Subtraction of Volume

Required difference of the capacity = 27 ℓ 688 mℓ


Word problems on subtraction of capacity and volume:

9. Olivia purchased 7 l 500 ml of milk. She consumed 3 l 700 ml of milk during the day. How much milk was left? 

Solution:

Quantity of milk purchased                         =             7 l 500 ml

Quantity of milk consumed                         =             3 l 700 ml

Therefore, quantity of milk left                   =             3 l 800 ml


The above problems on subtraction of capacity and volume will help the students to practice the worksheet on subtracting the different units with conversion or without conversion.


Worksheet on Subtraction of Capacity:

I. Subtract the following:

(i) 24 l 445 ml – 14 l 134 ml

(ii) 65 l 109 ml – 42 l 813 ml

(iii) 74 l 340 ml – 51 l 250 ml

(iv) 90 l 000 ml – 42 l 056 ml

(v) 81 l 550 ml - 62 l 125 ml

(vi) 72 l 160 ml – 54 l 320 ml


Answers:

I. (i) 10 l 311 ml

(ii) 22 l 296 ml

(iii) 23 l 90 ml

(iv) 47 l 944 ml

(v) 19 l 425 ml

(vi) 17 l 840 ml


II. Subtract the following:

(i)

             mℓ       ℓ

              93     55

         -   61     40 _

             _______ _

(ii)

             mℓ       ℓ

              47     08

         -   16     00 _

             _______ _

(iii)

             mℓ       ℓ

              36     67

         -   22     35 _

             _______ _

(iv)

             mℓ       ℓ

              92     92

         -   71     31 _

             _______ _

(v)

             mℓ       ℓ

              54     95

         -   21     70 _

             _______ _

(vi)

             mℓ       ℓ

              36     39

         -   25     08 _

             _______ _

(vii)

             mℓ       ℓ

              89     72

         -   68     20 _

             _______ _

(viii)

             mℓ       ℓ

              84     97

         -   30     75 _

             _______ _

(ix)

             mℓ       ℓ

            190     975

         -   84     750 

             _______ _

(x)

             mℓ       ℓ

            403     320

        -  159     456 

             _______ _

(xi)

             mℓ       ℓ

            920     975

        -  700     716 

             _______ _

(xii)

             mℓ       ℓ

            400     925

        -  200     746 

             _______ _

(xiii)

             mℓ       ℓ

            513     777

        -  218     969 

             _______ _

(xiv)

             mℓ       ℓ

            403     320

        -  159     456 

             _______ _

(xv)

             mℓ       ℓ

            243     765

        -  142     762 

             _______ _

(xvi)

             mℓ       ℓ

            780     385

        -  599     462 

             _______ _

Answer:

II. (i) 32 ℓ 15 mℓ

(ii) 31 ℓ 8 mℓ

(iii) 14 ℓ 32 mℓ

(iv) 21 ℓ 61 mℓ

(v) 33 ℓ 25 mℓ

(vi) 11 ℓ 31 mℓ

(vii) 21 ℓ 52 mℓ

(viii) 54 ℓ 22 mℓ

(ix) 106 ℓ 225 mℓ
 
(x) 243 ℓ 864 mℓ

(xi) 220 ℓ 259 mℓ

(xii) 200 ℓ 179 mℓ

(xiii) 294 ℓ 808 mℓ

(xiv) 243 ℓ 864 mℓ

(xv) 101 ℓ 3 mℓ

(xvi) 180 ℓ 923 mℓ

You might like these

Related Concepts

Standard Unit of Capacity

Conversion of Standard Unit of Capacity

Addition of Capacity




3rd Grade Math Worksheets

3rd Grade Math Lessons

From Subtraction of Capacity to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. Worksheet on Word Problems on Fractions | Fraction Word Problems | Ans

    Jul 16, 24 02:20 AM

    In worksheet on word problems on fractions we will solve different types of word problems on multiplication of fractions, word problems on division of fractions etc... 1. How many one-fifths

    Read More

  2. Word Problems on Fraction | Math Fraction Word Problems |Fraction Math

    Jul 16, 24 01:36 AM

    In word problems on fraction we will solve different types of problems on multiplication of fractional numbers and division of fractional numbers.

    Read More

  3. Worksheet on Add and Subtract Fractions | Word Problems | Fractions

    Jul 16, 24 12:17 AM

    Worksheet on Add and Subtract Fractions
    Recall the topic carefully and practice the questions given in the math worksheet on add and subtract fractions. The question mainly covers addition with the help of a fraction number line, subtractio…

    Read More

  4. Comparison of Like Fractions | Comparing Fractions | Like Fractions

    Jul 15, 24 03:22 PM

    Comparison of Like Fractions
    Any two like fractions can be compared by comparing their numerators. The fraction with larger numerator is greater than the fraction with smaller numerator, for example \(\frac{7}{13}\) > \(\frac{2…

    Read More

  5. Worksheet on Reducing Fraction | Simplifying Fractions | Lowest Form

    Jul 15, 24 03:17 PM

    Worksheet on Reducing Fraction
    Practice the questions given in the math worksheet on reducing fraction to the lowest terms by using division. Fractional numbers are given in the questions to reduce to its lowest term.

    Read More