Addition of Capacity

In addition of capacity we will learn how to add the different units of capacity and volume together. While adding we need to follow that the units of capacity i.e., liter and milliliter are converted into milliliters before addition and then follow the simple addition process.

We will learn two different methods to solve addition using the standard unit and smaller unit of capacity. Students can practice both the methods.

(i) Adding units with conversion into milliliters

(ii) Adding units without conversion into milliliters


We can add two or more units of capacity l and ml just like ordinary numbers.

Worked-out examples on addition of capacity and volume:

1. Add 3 l 600 ml and 6 l 300 ml

Solution:

Method 1 (with conversion into milliliters):

We know, 1 liter = 1000 milliliters

Now liter (l) and milliliters (ml) are converted into ml before doing addition and then we need to follow the simple addition process.

3 l 600 ml = (3 × 1000) ml + 600 ml = 3000 ml + 600 ml = 3600 milliliters

6 l 300 ml = (6 × 1000) ml + 300 ml = 6000 ml + 300 ml = 6300 milliliters

Now sum,

          3600 ml     

      +  6300 ml

          9900 ml

                     = 9 l 900 ml

Therefore, 3 l 600 ml + 6 l 300 ml = 9 l 900 ml


Method 2 (without conversion into milliliters):

Here l and ml are arranged in different columns and then added like ordinary numbers.

(i) l and ml are arranged column-wise

(ii) 600 ml + 300 ml = 900 ml

(iii) 3 l + 6 l = 9 l

            l        ml
            3       600

       +   6       300
            9       900

                         = 9 l 900 ml

Therefore, sum of 3 l 600 ml and 6 l 300 ml = 9 l 900 ml.


2. Add 5 l 725 ml and 8 l 450 ml

Solution:

Method 1 (with conversion into milliliters):

We know, 1 liter = 1000 milliliters

Now liter (l) and milliliters (ml) are converted into ml before doing addition and then we need to follow the simple addition process.

5 l 725 ml = (5 × 1000) ml + 725 ml = 5000 ml + 725 ml = 5725 milliliters

8 l 450 ml = (8 × 1000) ml + 450 ml = 8000 ml + 450 ml = 8450 milliliters

Now sum, 

            1
            5725
ml     

       +   8450 ml
          14175
ml

                      = 14 l 175 ml

Therefore, 5 l 725 ml + 8 l 450 ml = 14 l 175 ml


Method 2 (without conversion into milliliters):

Here l and ml are arranged in different columns and then added like ordinary numbers.

(i) l and ml are arranged column-wise

(ii) 725 ml + 450 ml = 1 l 175 ml.
175 ml is placed under ml. 1 l is taken in l column.

(iii) 1 l + 5 l + 8 l = 14 l

              l        ml
             1
             5      725

       + 
   8      450
        
  14      175

                         = 14 l 175 ml

Therefore, sum of 5 l 725 ml and 8 l 450 ml = 14 l 175 ml.


More solved examples on addition of capacity where the method is mentioned in the given question.

3. Add 17 l 387 ml, 7 l 750 ml and 9 l without conversion into milliliters

Solution:

Without conversion into milliliters here l and ml are arranged in different columns and then added like ordinary numbers.

(i) l and ml are arranged column-wise

(ii) 387 ml + 750 ml = 1 l 137 ml.
137 ml is placed under ml. 1 l is taken in l column.

(iii) 1 l + 17 l + 7 l + 9 l = 34 l

                    l       ml
                   21     1
                   17     387

                     7     750

               +    9     000
                   34     137

                                = 34 l 137 ml

Therefore, sum of 17 l 387 ml, 7 l 750 ml and 9 l = 34 l 137 ml.


4. Add 13 l 250 ml, 8 l 750 ml and 6 l with conversion into milliliters

Solution:

With conversion into milliliters here we will do the addition process.

We know, 1 liter = 1000 milliliters

Now liter (l) and milliliters (ml) are converted into ml before doing addition and then we need to follow the simple addition process.

13 l 250 ml = (13 × 1000) ml + 250 ml = 13000 ml + 250 ml = 13250 milliliters

8 l 750 ml = (8 × 1000) ml + 750 ml = 8000 ml + 750 ml = 8750 milliliters

6 l = (6 × 1000) ml = 6000 milliliters

Now sum, 

            111
            13250 ml  

             8750 ml

       +   6000 ml
           28000
ml

                       = 28 l 000 ml

                       = 28000 ml

Therefore, 13 l 250 ml + 8 l 750 ml + 6 l = 28000 ml


5. Add 36 l 275 ml and 16 l 150 ml.

Solution:

Arrange the numbers vertically.

First, add the milliliters.

275 ml + 150 ml = 425 ml

Add the liters

36 l + 16 l = 52 l

Addition of Capacity

Hence, 36 l 275 ml + 16 l 150 ml = 52 l 425 ml


6. Add 150 l 810 ml and 90 l 300 ml

Solution:

Arrange the numbers vertically.

First, add the milliliters.

810 ml + 300 ml = 1110 ml

                         = 1 l 110 ml

Write 110 under ml column and carry over 1 l to the liters column.

Add the liters

150 l + 90 l + 1 = 241 l

Addition of Capacity Measures

Hence, 150 ℓ 810 mℓ + 90 ℓ 300 mℓ = 241 ℓl 110 mℓ


For addition, write the number of mℓ and ℓ in separate columns then add like ordinary numbers. starting from the right.

7. Add 27 ℓ 450 mℓ & 52 ℓ 120 mℓ.

Solution:

                   mℓ      ℓ

                   27     450

             +   52     120 

                  79      570 


Answer: 79 mℓ 570 mℓ


8. Add 214 ℓ 321 mℓ, 426 ℓ 932 mℓ & 358 ℓ 416 mℓ.

Solution:

                     mℓ           ℓ

                     1   1  

                   2 1 4      3 2 1

                   4 2 6      9 3 2

             +   3 5 8      4 1 6 

                  9 9 9      6 6 9 


Answer: 999 mℓ 669 mℓ


Word Problems on Addition of Capacity and Volume:

9. Finn purchased 3 l 250 ml of milk on Monday, 2 l 750 ml on Wednesday and 3 500 ml on Friday. How much milk did Finn purchased during these three days?

Solution:

                                                                                1    1
Milk purchased on Monday                                     =   3 l  250 ml

Milk purchased on Wednesday                                =   2 l  750 ml

Milk purchased on Friday                                        =   3 l  500 ml
                                                                              +                  

Therefore, total milk purchased during these 3 days =   9 l  500 ml


The above problems on addition of capacity will help the students to practice the worksheet on adding the different units with conversion or without conversion.

Addition of Units of Capacity

Questions and Answers on Addition of Capacity:

I. Add the following:

(i) 7 l 152 ml + 2 l 339 ml

(ii) 5 l 240 ml + 7 l 860 ml

(iii) 70 l 000 ml + 22 l 504 ml

(iv) 13 l 1290 ml + 18 l 160 ml

(v) 32 l 540 ml + 18 l + 210 ml

(vi) 19 l 300 ml + 3 l 900 ml

(vii) 62 l 200 ml + 15 ml 385 ml

(viii) 120 l + 625 ml + 30 l 750 ml

(ix) 21 l 845 ml + 32 l 116 ml + 38 l 082 ml


Answers:

I. (i) 9 l 491 ml

(ii) 13 l 100 ml

(iii) 92 l 504 ml

(iv) 31 l 450 ml

(v) 50 l 750 ml

(vi) 23 l 200 ml

(vii) 77 l 585 ml

(viii) 151 l 375 ml

(ix) 92 l 43 ml


II. Add the following:

(i)

             mℓ       ℓ

              21     27

        +   48     32 _

             _______ _

(ii)

             mℓ      ℓ

              86     45

        +   12     20 _

             _______ _

(iii)

             mℓ       ℓ

              27     10

        +   11     25 _

             _______ _

(iv)

             mℓ      ℓ

              32     94

        +   60     05 _

             _______ _

(v)

             mℓ        ℓ

              17     826

        +   23     578 _

             _______ __

(vi)

             mℓ        ℓ

              46     950

        +   39     475 _

             ________ _

(vii)

             mℓ        ℓ

              76     586

        +   45     674 _

             _______ __

(viii)

             mℓ        ℓ

              51     700

        +   48     300 _

             ________ _

(ix)

             mℓ        ℓ

             209     68

             214     09

        +   116     00 _

             _______ __

(x)

             mℓ        ℓ

             423     00

             147     05

        +   208     79 _

             _______ __

(xi)

             mℓ        ℓ

             126     90

             103     70

        +   264     50 _

             _______ __

(xii)

             mℓ        ℓ

             210     73

             216     08

        +   205     98 _

             _______ __

(xiii)

              mℓ        ℓ

             205     853

             369     786

        +      8     678 _

             ________ __

(xiv)

              mℓ       ℓ

             125     675

             465     850

        +   310     625 _

             ________ __

(xv)

              mℓ        ℓ

             318     564

             237     658

        +      8     678 _

             ________ __

(xvi)

              mℓ       ℓ

             275     750

             117     650

        +     10     545 _

             ________ __


Answer:

2. (i) 69 ℓ 59 mℓ

(ii) 98 ℓ 65 mℓ

(iii) 38 ℓ 35 mℓ

(iv) 92 ℓ 99 mℓ

(v) 41 ℓ 404 mℓ

(vi) 86 ℓ 425 mℓ

(vii) 122 ℓ 260 mℓ

(viii) 100 ℓ 00 mℓ

(ix) 53 ℓ 977 mℓ
 
(x) 77 ℓ 884 mℓ

(xi) 49 ℓ 510 mℓ

(xii) 63 ℓ 279 mℓ

(xiii) 584 ℓ 317 mℓ

(xiv) 902 ℓ 150 mℓ

(xv) 564 ℓ 600 mℓ

(xvi) 403 ℓ 945 mℓ

Related Concepts

Standard Unit of Capacity

Conversion of Standard Unit of Capacity

Subtraction of Capacity








3rd Grade Math Worksheets

3rd Grade Math Lessons

From Addition of Capacity to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Fraction in Lowest Terms |Reducing Fractions|Fraction in Simplest Form

    Feb 28, 24 04:07 PM

    Fraction 8/16
    There are two methods to reduce a given fraction to its simplest form, viz., H.C.F. Method and Prime Factorization Method. If numerator and denominator of a fraction have no common factor other than 1…

    Read More

  2. Equivalent Fractions | Fractions |Reduced to the Lowest Term |Examples

    Feb 28, 24 01:43 PM

    Equivalent Fractions
    The fractions having the same value are called equivalent fractions. Their numerator and denominator can be different but, they represent the same part of a whole. We can see the shade portion with re…

    Read More

  3. Fraction as a Part of Collection | Pictures of Fraction | Fractional

    Feb 27, 24 02:43 PM

    Pictures of Fraction
    How to find fraction as a part of collection? Let there be 14 rectangles forming a box or rectangle. Thus, it can be said that there is a collection of 14 rectangles, 2 rectangles in each row. If it i…

    Read More

  4. Fraction of a Whole Numbers | Fractional Number |Examples with Picture

    Feb 24, 24 04:11 PM

    A Collection of Apples
    Fraction of a whole numbers are explained here with 4 following examples. There are three shapes: (a) circle-shape (b) rectangle-shape and (c) square-shape. Each one is divided into 4 equal parts. One…

    Read More

  5. Identification of the Parts of a Fraction | Fractional Numbers | Parts

    Feb 24, 24 04:10 PM

    Fractional Parts
    We will discuss here about the identification of the parts of a fraction. We know fraction means part of something. Fraction tells us, into how many parts a whole has been

    Read More