# Addition of Mass

In addition of mass we will learn how to add the different units of mass or weight together.

Let us learn how to add different units of mass.

While adding we need to follow that the units of mass i.e., kilogram and gram are converted into grams before addition and then follow the simple addition process. We can add two or more units of mass given in kilogram and grams like ordinary numbers. Always express grams as 3-digit numbers for example 3 g = 003 g.

We will learn two different methods to solve addition using the standard unit and smaller unit of mass. Students can practice both the methods.

(i) Adding units with conversion into gram

(ii) Adding units without conversion into gram

Worked-out examples on addition of mass:

1. Add 7 kg 350 g and 2 kg 150 g

Solution:

Method 1 (with conversion into gram):

We know, 1 kg = 1000 grams

Now kg and g are converted into grams before doing addition and then we need to follow the simple addition process.

7 kg 350 g = (7 × 1000) g + 350 g = 7000 g + 350 g = 7350 grams

2 kg 150 g = (2 × 1000) g + 150 g = 2000 g + 150 g = 2150 grams

Now sum,

1
7 3 5 0 g

+
2 1 5 0

9 5 0 0

= 9 kg 500 g

Therefore, 7 kg 350 g + 2 kg 150 g = 9 kg 500 g

Method 2 (without conversion into gram):

Here kg and g are arranged in different columns and then added like ordinary numbers.

kg       g
1
7     3 5 0

+   2     1 5 0

9     5 0 0

= 9 kg 500 g

Therefore, sum of 7 kg 350 g and 2 kg 150 g = 9 kg 500 g

2. Add 8 kg 575 g and 4 kg 897 g

Solution:

Method 1 (with conversion into gram):

We know, 1 kg = 1000 grams

Now kg and g are converted into grams before doing addition and then we need to follow the simple addition process.

8 kg 575 g = (8 × 1000) g + 575 g = 8000 g + 575 g = 8575 grams

4 kg 897 g = (4 × 1000) g + 897 g = 4000 g + 897 g = 4897 grams

Now sum,

1 1 1
8 5 7 5  g

+  4 8 9 7  g

1 3 4 7 2  g

= 13 kg 472 g

Therefore, 8 kg 575 g + 4 kg 897 g = 13 kg 472 g

Method 2 (without conversion into gram):

Here kg and g are arranged in different columns and then added like ordinary numbers.

kg        g
1     1 1
8     5 7 5

+   4     8 9 7

1 3      4 7 2

= 13 kg 472 g

Therefore, sum of 8 kg 575 g and 4 kg 897 g = 13 kg 472 g

3. Add 17 kg, 13 kg 940 g and 15 kg 65 g

Solution:

Here kg and g are arranged in different columns and then added like ordinary numbers (without conversion into gram).

kg       g
11     1
17     000

13     940

+  15     065

46     005

= 46 kg 005 g

Therefore, sum of 17 kg, 13 kg 940 g and 15 kg 65 g = 46 kg 005 g

4. Add 6 kg 135 g and 11 kg 954 g.

Solution:

 Arrange the numbers vertically.First, add the grams.135 + 954 = 1089 g = 1000 g + 89 gWrite 89 under grams column and carry over 1 kg to kilograms column. Add the kilograms.6 + 11 + 1 (carry over) = 18 kg

Write 18 kg under the kilograms column.

Hence, 6 kg 135 g + 11 kg 954 g = 18 kg 89 g.

5. Add: 45 kg 726 g, 23 kg 12 g and 7 kg 53 g.

 Solution:Let us addStep I: Arrange the numbers vertically.Step II: Write the weights to be added in kg and g as shown here.Step III: First add grams from right and then add the kilograms.

Thus, 45 kg 726 g + 23 kg 12 g + 7 kg 53 g = 75 kg 791 g

To add weight, write the number of kg and g in separate columns then add like ordinary numbers, starting from the right.

6. Add 28 kg 460 g + 45 kg 385 g.

Solution:

kg        g

1           1

2 8     4 6 0

+   4 5     3 8 5

7 3      8 4 5

Answer: 73 kg 845 g

7. Add 43 kg 56 g, 12 kg 74 g & 21 kg 95 g.

kg        g

2       1

4 3     5 6

1 2     7 4

+   2 1     9 5

7 8     2 5

Answer: 78 kg 25 g

8. Find the sum of the weight 19 kg 400 g + 17 kg 700 g:

 Solution:19 kg 400 g + 17 kg 700 gFirst add g    = 400 g + 700 g                   = 1100 g                   = 1 kg 100 gNow add kg  = 19 kg + 17 kg + 1 kg (carry)                   = 37 kg

Therefore, the required sum of the weight = 37 kg 100 g

The above problems on addition of mass will help the students to practice the worksheet on adding the different units with conversion or without conversion.

Questions and Answers on Addition of Mass:

I. Add the given weights:

(i) 23 kg 084 g + 16 kg 214 g

(ii) 32 g 132 mg + 57 g 265 mg

(iii) 34 kg 000 g + 19 kg 075 g

(iv) 44 kg 725 g + 15 kg 200 g

(v) 70 kg 600 g + 18 kg 504 g

(vi) 41 g 800 mg + 12 g 200 mg + 33 g 082 mg

I. (i) 39 kg 298 g

(ii) 89 g 397 mg

(iii) 53 kg 75 g

(iv) 59 kg 925 g

(v) 89 kg 104 g

(vi) 87 g 82 mg

II. Add the following:

(i) 23 kg 673 g, 10 kg 98 g and 5 kg 600 g

(ii) 38 kg 900 g, 17 kg 547 g and 12 kg 621 g

(iii) 56 kg 411 g, 21 kg 561 g and 8 kg

(iv) 156 kg 32 g, 441 kg 198 g and 158 kg 200 g

(v) 200 kg 500 g, 279 kg 679 g and 134 kg 450 g

(vi) 250 kg 60 g, 45 kg 100 g and 90 kg 300 g

(vii) 180 kg 110 g, 170 kg 85 g and 60 kg 50 g

(viii) 310 kg 500 g, 105 kg 180 g and 15 kg 50 g

(ix) 75 kg 350 g, 150 kg 200 g and 225 kg 175 g

II. (i) 39 kg 371 g

(ii) 69 kg 68 g

(iii) 85 kg 972 g

(iv) 755 kg 43 g

(v) 614 kg 629 g

(vi) 385 kg 460 g

(vii) 410 kg 245 g

(viii) 430 kg 730 g

(ix) 450 kg 725 g

III. Add the following:

(i) 23 kg 345 g, 12 kg 120 g and 5 kg 78 g

(ii) 127 kg 437 g, 67 kg 790 g and 34 kg

(iii) 904 kg 230 g, 14 kg 780 g and 17 kg 495 g

(iv) 33 kg 480 g, 348 kg 560 g and 70 kg 30 g

(v) 65 kg 632 g, 121 kg 12 g and 130 kg

III. (i) 405 kg 543 g

(ii) 229 kg 227 g

(iii) 936 kg 505 g

(iv) 452 kg 70 g

(v) 316 kg 644 g

IV. Add the following:

 (i) kg          g          37         87    +    11         11     _____________ (ii) kg          g          13         60    +    61         20     _____________
 (iii) kg          g          54         84    +    27         40     _____________ (iv) kg          g          74         15    +    17         18     _____________
 (v) kg          g          96         35    +    42         53     _____________ (vi) kg          g          12         83    +    14         17     _____________
 (vii) kg          g          18         56    +    07         37     _____________ (viii) kg          g          54         45    +    37         48     _____________
 (ix) kg           g          56         904          38         417    +  112         568     ______________ (x) kg           g          65         394          09         678    +    83         467    ______________
 (xi) kg           g          26         760          14         650    +    79         480    ______________ (xii) kg           g          53         350          36         150    +    63         100    ______________
 (xiii) kg           g          76         706          19         890    +    17         700    ______________ (xiv) kg           g          13         576          46         695    +    20         800    ______________
 (xv) kg           g          18         985          15         850    +    16         250    ______________ (xvi) kg           g          25         705          25         350    +    63         111    ______________

IV. (i) 48 kg 98 g

(ii) 74 kg 80 g

(iii) 81 kg 124 g

(iv) 91 kg 33 g

(v) 138 kg 88 g

(vi) 26 kg 100 g

(vii) 25 kg 93 g

(viii) 91 kg 93 g

(ix) 207 kg 889 g

(x) 158 kg 539 g

(xi) 120 kg 890 g

(xii) 152 kg 600 g

(xiii) 114 kg 296 g

(xiv) 81 kg 71 g

(xv) 51 kg 85 g

(xvi) 114 kg 166 g

## You might like these

• ### Mental Math on Time | 4th Grade Time Worksheet | Tricks | Techniques

In mental math on time, we will solve different types of problems on reading time to the nearest minutes, reading time to the exact minutes, use of a.m. and p.m., 24-hours clock, days in a year and calculating days.

• ### Telling Time in a.m. and p.m. | Antemeridian and Postmeridian|Examples

The clock shows time in 12 hour cycle. The first cycle of the hour hand completes at 12 o’clock midday or noon. The second cycle of the hour hand completes at 12 o’clock midnight. ‘a.m.’ and ‘p.m.’ are used to represent the time of the day. ‘a.m.’ stands for ante meridiem,

• ### Different Ways of Reading Time | Many Ways to Read Time | Telling Time

What are the different ways of reading time? There are many ways to read time: (a) When hour-hand is exactly at any number and minute-hand is at 12, we read the time in full hours. If hour hand is at

• ### Quarter Past and Quarter To | Quarter Past Hour | Quarter to Next Hour

The hands of clock move from left to right. This is called the clock wise motion. When the minute hand is on the right side of the clock, it shows the number of minutes past the hour. When the minute hand is on the left side of the clock, it shows the number of minutes to

• ### Mental Math on Measurement | Mental Maths Questions with Answers

In mental math on measurement we will solve different type of problems on conversion of length, conversion of mass and conversion of capacity.

• ### 4th Grade Measurement Worksheet | Free Math Worksheet with Answers

In 4th grade measurement worksheet we will solve different types of problems on measurement of length, measurement of capacity, measurement of mass, expressing one unit in terms of another, addition of length, subtraction of length, addition of mass, subtraction of mass

• ### Worksheet on Measurement | Problems on Measurement | Homework |Answers

In worksheet on measurement we will solve 27 different types of questions.1. John bought 27.5 m of cloth. How many cm of cloth did he buy? 2. Convert a distance of 20 km to metres. 3. Convert 98 km

• ### Subtraction of Capacity | Units of Capacity and Volume | Examples

In subtraction of capacity we will learn how to find the difference between the units of capacity and volume. While subtracting we need to follow that the units of capacity

• ### Addition of Capacity | Add the Different Units of Capacity | Examples

In addition of capacity we will learn how to add the different units of capacity and volume together. While adding we need to follow that the units of capacity i.e., liter and milliliter

• ### Subtraction of Mass | Difference Between the Units of Mass | Examples

In subtraction of mass we will learn how to find the difference between the units of mass or weight. While subtracting we need to follow that the units of mass i.e., kilogram and gram

• ### Subtraction of Length | Learn How the Values of Length are Arranged

The process of subtraction of units of length is exactly similar to that of subtraction of ordinary numbers. Learn how the values of length are arranged in different columns for the subtraction of length. 1. Subtract 12 m 36 cm from 48 m 57 cm Solution:

• ### Addition of Length | Learn How the Values of Length are Arranged

The process of addition of units of length is exactly similar to addition of ordinary numbers. Learn how the values of length are arranged in different columns for the addition of length. 1. Add 15 m 18 cm and 16 m 22 cm

• ### Worksheet on Measurement of Length | Exercise Sheet on Measurements

In worksheet on measurement of length, all grade students can practice the questions on units for measuring length.

• ### Worksheet on Measurement of Capacity | Measuring Capacity Worksheets

In worksheet on measurement of capacity, all grade students can practice the questions on units for measuring capacity. This exercise sheet on measurements can be practiced by the students to get more

• ### Conversion of Standard Unit of Capacity | Unit of Capacity | Problems

For the conversion of standard unit of capacity it’s very important to know the relationship between the different units of capacity. We know, one litre = 1000 millilitre 1000 millilitre = 1 litre

● Related Concepts

3rd Grade Math Worksheets

3rd Grade Math Lessons

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

## Recent Articles

1. ### Addition and Subtraction of Fractions | Solved Examples | Worksheet

Jul 18, 24 03:08 PM

Addition and subtraction of fractions are discussed here with examples. To add or subtract two or more fractions, proceed as under: (i) Convert the mixed fractions (if any.) or natural numbers

2. ### Worksheet on Simplification | Simplify Expressions | BODMAS Questions

Jul 18, 24 01:19 AM

In worksheet on simplification, the questions are based in order to simplify expressions involving more than one bracket by using the steps of removal of brackets. This exercise sheet

3. ### Fractions in Descending Order |Arranging Fractions an Descending Order

Jul 18, 24 01:15 AM

We will discuss here how to arrange the fractions in descending order. Solved examples for arranging in descending order: 1. Arrange the following fractions 5/6, 7/10, 11/20 in descending order. First…

4. ### Fractions in Ascending Order | Arranging Fractions | Worksheet |Answer

Jul 18, 24 01:02 AM

We will discuss here how to arrange the fractions in ascending order. Solved examples for arranging in ascending order: 1. Arrange the following fractions 5/6, 8/9, 2/3 in ascending order. First we fi…