Subscribe to our YouTube channel for the latest videos, updates, and tips.
We will learn step-by-step the proof of compound angle formula sin2 α - sin2 β. We need to take the help of the formula of sin (α + β) and sin (α - β) to proof the formula of sin2 α - sin2 β for any positive or negative values of α and β.
Prove that sin (α + β) sin (α - β) = sin2 α - sin2 β = cos2 β - cos2 α.
Proof: sin(α + β) sin (α + β)
= (sin α cos β + cos α sin β) (sin α cos β - cos α sin β); [applying the formula of sin (α + β) and sin (α - β)]
= (sin α cos β)2 - (cos α sin β)2
= sin2 α cos2 β - cos2 α sin2 β
= sin2 α (1 - sin2 β) - (1 - sin2 α) sin2 β; [since we know, cos2 θ = 1 - sin2 θ]
= sin2 α
- sin2 α sin2 β - sin2 β + sin2 α sin2 β
= sin2 α - sin2 β
= 1 - cos2 α - (1 - cos2 β); [since we know, sin2 θ = 1 - cos2 θ]
= 1 - cos2 α - 1 + cos2 β
= cos2 β - cos2 α Proved
Therefore, sin (α + β) sin (α - β) = sin2 α - sin2 β = cos2 β - cos2 α
Solved examples using the proof of compound angle formula sin2 α - sin2 β:
1. Prove that sin2 6x - sin2 4x = sin 2x sin 10x.
Solution:
L.H.S. = sin2 6x - sin2 4x
= sin (6x + 4x) sin (6x - 4x); [since we know sin2 α - sin2 β = sin (α + β) sin (α - β)]
= sin 10x sin 2x = R.H.S. Proved
2. Prove that cos2 2x - cos2 6x = sin 4x sin 8x.
Solution:
L.H.S. = cos2 2x - cos2 6x
= (1 - sin2 2x) - (1 - sin2 6x), [since we know cos2 θ = 1 - sin2 θ]
= 1 - sin2 2x - 1 + sin2 6x
= sin2 6x - sin2 2x
= sin (6x + 2x) sin (6x - 2x), [since we know sin2 α - sin2 β = sin (α + β) sin (α - β)]
= sin 8x sin 4x = R.H.S. Proved
3. Evaluate: sin2 (\frac{π}{8} + \frac{x}{2}) - sin^{2} (\frac{π}{8} - \frac{x}{2}).
Solution:
sin^{2} (\frac{π}{8} + \frac{x}{2}) - sin^{2} (\frac{π}{8} - \frac{x}{2})
= sin {(\frac{π}{8} + \frac{x}{2}) + (\frac{π}{8} - \frac{x}{2})} sin {(\frac{π}{8} + \frac{x}{2}) - (\frac{π}{8} - \frac{x}{2})}, [since we know sin^{2} α - sin^{2} β = sin (α + β) sin (α - β)]
= sin {\frac{π}{8} + \frac{x}{2} + \frac{π}{8} - \frac{x}{2}} sin {\frac{π}{8} + \frac{x}{2} - \frac{π}{8} + \frac{x}{2}}
= sin {\frac{π}{8} + \frac{π}{8}} sin {\frac{x}{2} + \frac{x}{2}}
= sin \frac{π}{4} sin x
= \frac{1}{√2} sin x, [Since we know sin \frac{π}{4} = \frac{1}{√2}]
11 and 12 Grade Math
From Proof of Compound Angle Formula sin^2 α - sin^2 β to HOME PAGE
Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.
May 20, 25 05:40 PM
May 19, 25 02:53 PM
May 18, 25 04:33 PM
May 17, 25 04:04 PM
May 17, 25 03:47 PM
New! Comments
Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.