Proof of Compound Angle Formula
cos (α + β)

We will learn step-by-step the proof of compound angle formula cos (α + β). Here we will derive formula for trigonometric function of the sum of two real numbers or angles and their related result. The basic results are called trigonometric identities.

The expansion of cos (α + β) is generally called addition formulae. In the geometrical proof of the addition formulae we are assuming that α, β and (α + β) are positive acute angles. But these formulae are true for any positive or negative values of α and β.

Now we will prove that, cos (α + β) = cos α cos β - sin α sin β; where α and β are positive acute angles and α + β < 90°.

Let a rotating line OX rotate about O in the anti-clockwise direction. From starting position to its initial position OX makes out an acute ∠XOY = α.

Again, the rotating line rotates further in the same direction and starting from the position OY makes out an acute ∠YOZ = β.

Thus, ∠XOZ = α + β < 90°.    

We are suppose to prove that, cos (α + β) = cos α cos β - sin α sin β.


Construction: On the bounding line of the compound angle (α + β) take a point A on OZ, and draw AB and AC perpendiculars to OX and OY respectively. Again, from C draw perpendiculars CD and CE upon OX and AB respectively.

Proof of Compound Angle Formula cos (α + β)

Proof: From triangle ACE we get, ∠EAC = 90° - ∠ACE = ∠ECO = alternate ∠COX = α.

Now, from the right-angled triangle AOB we get,

cos (α + β) = \(\frac{OB}{OA}\)

                = \(\frac{OD - BD}{OA}\)

                = \(\frac{OD}{OA}\) - \(\frac{BD}{OA}\)

                = \(\frac{OD}{OA}\) - \(\frac{EC}{OA}\)

                = \(\frac{OD}{OC}\) ∙ \(\frac{OC}{OA}\) - \(\frac{EC}{AC}\) ∙ \(\frac{AC}{OA}\)

                = cos α cos β - sin ∠EAC sin β

                = cos α cos β - sin α sin β, (since we know, ∠EAC = α)

Therefore, cos (α + β) = cos α cos β - sin α sin β.  Proved

 

1. Using the t-ratios of 30° and 45°, evaluate cos 75°

Solution:

   cos 75°

= cos (45° + 30°)

= cos 45° cos 30° - sin 45° sin 30

= \(\frac{1}{√2}\) ∙ \(\frac{√3}{2}\) - \(\frac{1}{√2}\) ∙ \(\frac{1}{2}\)

= \(\frac{√3  -  1}{2√2}\)

2. Find the values of cos 105°

Solution:

Given, cos 105°

= cos (45° + 60°)

= cos 45° cos 60° - sin 45° sin 60°

= \(\frac{1}{√2}\) ∙ \(\frac{1}{2}\) - \(\frac{1}{√2}\) ∙ \(\frac{√3}{2}\)

= \(\frac{1  -  √3}{2√2}\)


3. If sin A = \(\frac{1}{√10}\), cos B = \(\frac{2}{√5}\) and A, B are positive acute angles, then find the value of (A + B).

Solution:

Since we know that, cos\(^{2}\) A = 1 - sin\(^{2}\) A

                                      = 1 - (\(\frac{1}{√10}\))\(^{2}\)

                                      = 1 - \(\frac{1}{10}\)

                                      = \(\frac{9}{10}\)

                             cos A = ± \(\frac{3}{√10}\)

Therefore, cos A = \(\frac{3}{√10}\),  (since, A is a positive acute angle)

Again, sin\(^{2}\) B = 1 - cos\(^{2}\) B

                  = 1 - (\(\frac{2}{√5}\))\(^{2}\)

                  = 1 - \(\frac{4}{5}\)

                  = \(\frac{1}{5}\)

           sin B = ± \(\frac{1}{√5}\)              

Therefore, sin B = \(\frac{1}{√5}\), (since, B is a positive acute angle)

Now, cos (A + B) = cos A cos B - sin A sin B

                        = \(\frac{3}{√10}\) ∙ \(\frac{2}{√5}\) - \(\frac{1}{√10}\) ∙ \(\frac{1}{√5}\)

                        = \(\frac{6}{5√2}\) - \(\frac{1}{5√2}\)

                        = \(\frac{5}{5√2}\)

                        = \(\frac{1}{√2}\)

    ⇒ cos (A + B) = cos π/4   

Therefore, A + B = π/4.


4. Prove that cos (π/4 - A) cos (π/4 - B) - sin (π/4 - A) sin (π/4 - B) = sin (A + B)

Solution:

L.H.S. = cos (π/4 - A) cos (π/4 - B) - sin (π/4 - A) sin (π/4 - B)

         = cos {(π/4 - A) + (π/4 - B)}

         = cos (π/4 - A + π/4 - B)

         = cos (π/2 - A - B)

         = cos [π/2 - (A + B)]

         = sin (A + B) = R.H.S.  Proved.

 

5. Prove that sec (A + B) = \(\frac{sec A sec B}{1   -   tan A tan B}\)

Solution:

L.H.S. = sec (A + B)

         = \(\frac{1}{cos (A   +   B) }\)

         = \(\frac{1}{cos A cos  B   -   sin A sin B}\), [Applying the formula of cos (A + B)]

         = \(\frac{\frac{1}{cos A cos B}}{\frac{cos A cos B}{cos A cos B}  +  \frac{sin A sin B}{cos A cos B}}\), [dividing numerator and denominator by cos A cos B]

          = \(\frac{sec A sec B}{1   -   tan A tan B}\).  Proved

 Compound Angle






11 and 12 Grade Math

From Proof of Compound Angle Formula cos (α + β) to HOME PAGE


New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.



Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



Share this page: What’s this?

Recent Articles

  1. Multiply a Number by a 2-Digit Number | Multiplying 2-Digit by 2-Digit

    Mar 27, 24 05:21 PM

    Multiply 2-Digit Numbers by a 2-Digit Numbers
    How to multiply a number by a 2-digit number? We shall revise here to multiply 2-digit and 3-digit numbers by a 2-digit number (multiplier) as well as learn another procedure for the multiplication of…

    Read More

  2. Multiplication by 1-digit Number | Multiplying 1-Digit by 4-Digit

    Mar 26, 24 04:14 PM

    Multiplication by 1-digit Number
    How to Multiply by a 1-Digit Number We will learn how to multiply any number by a one-digit number. Multiply 2154 and 4. Solution: Step I: Arrange the numbers vertically. Step II: First multiply the d…

    Read More

  3. Multiplying 3-Digit Number by 1-Digit Number | Three-Digit Multiplicat

    Mar 25, 24 05:36 PM

    Multiplying 3-Digit Number by 1-Digit Number
    Here we will learn multiplying 3-digit number by 1-digit number. In two different ways we will learn to multiply a two-digit number by a one-digit number. 1. Multiply 201 by 3 Step I: Arrange the numb…

    Read More

  4. Multiplying 2-Digit Number by 1-Digit Number | Multiply Two-Digit Numb

    Mar 25, 24 04:18 PM

    Multiplying 2-Digit Number by 1-Digit Number
    Here we will learn multiplying 2-digit number by 1-digit number. In two different ways we will learn to multiply a two-digit number by a one-digit number. Examples of multiplying 2-digit number by

    Read More

  5. Worksheet on Multiplying 1-Digit Numbers |Multiplying One Digit Number

    Mar 25, 24 03:39 PM

    Multiplication tables will help us to solve the worksheet on multiplying 1-digit numbers. The questions are based on multiplying one digit number and word problems on multiplying one digit number.

    Read More