Proof of Compound Angle Formula
cos (α + β)

We will learn step-by-step the proof of compound angle formula cos (α + β). Here we will derive formula for trigonometric function of the sum of two real numbers or angles and their related result. The basic results are called trigonometric identities.

The expansion of cos (α + β) is generally called addition formulae. In the geometrical proof of the addition formulae we are assuming that α, β and (α + β) are positive acute angles. But these formulae are true for any positive or negative values of α and β.

Now we will prove that, cos (α + β) = cos α cos β - sin α sin β; where α and β are positive acute angles and α + β < 90°.

Let a rotating line OX rotate about O in the anti-clockwise direction. From starting position to its initial position OX makes out an acute ∠XOY = α.

Again, the rotating line rotates further in the same direction and starting from the position OY makes out an acute ∠YOZ = β.

Thus, ∠XOZ = α + β < 90°.    

We are suppose to prove that, cos (α + β) = cos α cos β - sin α sin β.


Construction: On the bounding line of the compound angle (α + β) take a point A on OZ, and draw AB and AC perpendiculars to OX and OY respectively. Again, from C draw perpendiculars CD and CE upon OX and AB respectively.

Proof of Compound Angle Formula cos (α + β)

Proof: From triangle ACE we get, ∠EAC = 90° - ∠ACE = ∠ECO = alternate ∠COX = α.

Now, from the right-angled triangle AOB we get,

cos (α + β) = \(\frac{OB}{OA}\)

                = \(\frac{OD - BD}{OA}\)

                = \(\frac{OD}{OA}\) - \(\frac{BD}{OA}\)

                = \(\frac{OD}{OA}\) - \(\frac{EC}{OA}\)

                = \(\frac{OD}{OC}\) ∙ \(\frac{OC}{OA}\) - \(\frac{EC}{AC}\) ∙ \(\frac{AC}{OA}\)

                = cos α cos β - sin ∠EAC sin β

                = cos α cos β - sin α sin β, (since we know, ∠EAC = α)

Therefore, cos (α + β) = cos α cos β - sin α sin β.  Proved

 

1. Using the t-ratios of 30° and 45°, evaluate cos 75°

Solution:

   cos 75°

= cos (45° + 30°)

= cos 45° cos 30° - sin 45° sin 30

= \(\frac{1}{√2}\) ∙ \(\frac{√3}{2}\) - \(\frac{1}{√2}\) ∙ \(\frac{1}{2}\)

= \(\frac{√3  -  1}{2√2}\)

2. Find the values of cos 105°

Solution:

Given, cos 105°

= cos (45° + 60°)

= cos 45° cos 60° - sin 45° sin 60°

= \(\frac{1}{√2}\) ∙ \(\frac{1}{2}\) - \(\frac{1}{√2}\) ∙ \(\frac{√3}{2}\)

= \(\frac{1  -  √3}{2√2}\)


3. If sin A = \(\frac{1}{√10}\), cos B = \(\frac{2}{√5}\) and A, B are positive acute angles, then find the value of (A + B).

Solution:

Since we know that, cos\(^{2}\) A = 1 - sin\(^{2}\) A

                                      = 1 - (\(\frac{1}{√10}\))\(^{2}\)

                                      = 1 - \(\frac{1}{10}\)

                                      = \(\frac{9}{10}\)

                             cos A = ± \(\frac{3}{√10}\)

Therefore, cos A = \(\frac{3}{√10}\),  (since, A is a positive acute angle)

Again, sin\(^{2}\) B = 1 - cos\(^{2}\) B

                  = 1 - (\(\frac{2}{√5}\))\(^{2}\)

                  = 1 - \(\frac{4}{5}\)

                  = \(\frac{1}{5}\)

           sin B = ± \(\frac{1}{√5}\)              

Therefore, sin B = \(\frac{1}{√5}\), (since, B is a positive acute angle)

Now, cos (A + B) = cos A cos B - sin A sin B

                        = \(\frac{3}{√10}\) ∙ \(\frac{2}{√5}\) - \(\frac{1}{√10}\) ∙ \(\frac{1}{√5}\)

                        = \(\frac{6}{5√2}\) - \(\frac{1}{5√2}\)

                        = \(\frac{5}{5√2}\)

                        = \(\frac{1}{√2}\)

    ⇒ cos (A + B) = cos π/4   

Therefore, A + B = π/4.


4. Prove that cos (π/4 - A) cos (π/4 - B) - sin (π/4 - A) sin (π/4 - B) = sin (A + B)

Solution:

L.H.S. = cos (π/4 - A) cos (π/4 - B) - sin (π/4 - A) sin (π/4 - B)

         = cos {(π/4 - A) + (π/4 - B)}

         = cos (π/4 - A + π/4 - B)

         = cos (π/2 - A - B)

         = cos [π/2 - (A + B)]

         = sin (A + B) = R.H.S.  Proved.

 

5. Prove that sec (A + B) = \(\frac{sec A sec B}{1   -   tan A tan B}\)

Solution:

L.H.S. = sec (A + B)

         = \(\frac{1}{cos (A   +   B) }\)

         = \(\frac{1}{cos A cos  B   -   sin A sin B}\), [Applying the formula of cos (A + B)]

         = \(\frac{\frac{1}{cos A cos B}}{\frac{cos A cos B}{cos A cos B}  +  \frac{sin A sin B}{cos A cos B}}\), [dividing numerator and denominator by cos A cos B]

          = \(\frac{sec A sec B}{1   -   tan A tan B}\).  Proved

 Compound Angle






11 and 12 Grade Math

From Proof of Compound Angle Formula cos (α + β) to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.




Share this page: What’s this?

Recent Articles

  1. 2nd grade math Worksheets | Free Math Worksheets | By Grade and Topic

    Dec 04, 24 01:30 AM

    2nd Grade Math Worksheet
    2nd grade math worksheets is carefully planned and thoughtfully presented on mathematics for the students.

    Read More

  2. Time Duration |How to Calculate the Time Duration (in Hours & Minutes)

    Dec 04, 24 01:07 AM

    Time Duration Example
    Time duration tells us how long it takes for an activity to complete. We will learn how to calculate the time duration in minutes and in hours. Time Duration (in minutes) Ron and Clara play badminton…

    Read More

  3. Worksheet on Subtraction of Money | Real-life Word Problems | Answers

    Dec 04, 24 12:45 AM

    Worksheet on Subtraction of Money
    Practice the questions given in the worksheet on subtraction of money by using without conversion and by conversion method (without regrouping and with regrouping). Note: Arrange the amount of rupees…

    Read More

  4. Worksheet on Addition of Money | Questions on Adding Amount of Money

    Dec 04, 24 12:06 AM

    Worksheet on Addition of Money
    Practice the questions given in the worksheet on addition of money by using without conversion and by conversion method (without regrouping and with regrouping). Note: Arrange the amount of money in t…

    Read More

  5. Worksheet on Money | Conversion of Money from Rupees to Paisa

    Dec 03, 24 11:37 PM

    Worksheet on Money
    Practice the questions given in the worksheet on money. This sheet provides different types of questions where students need to express the amount of money in short form and long form

    Read More