# Proof of Tangent Formula tan (α - β)

We will learn step-by-step the proof of tangent formula tan (α - β).

Prove that: tan (α - β) = $$\frac{tan α - tan β}{1 + tan α tan β}$$.

Proof: tan (α - β) = $$\frac{sin (α - β)}{cos (α - β)}$$

= $$\frac{sin α cos β - cos α sin β}{cos α cos β + sin α sin β}$$

$$\frac{\frac{sin α cos β}{cos α cos β} - \frac{cos α sin β}{cos α cos β}}{\frac{cos α cos B}{cos α cos β} + \frac{sin α sin β}{cos α cos β}}$$, [dividing numerator and denominator by cos α cos β].

= $$\frac{tan α - tan β}{1 + tan α tan β}$$          Proved

Therefore, tan (α - β) = $$\frac{tan α - tan β}{1 + tan α tan β}$$.

Solved examples using the proof of tangent formula tan (α - β):

1. Find the values of tan 15°

Solution:

tan 15° = tan (45° - 30°)

= $$\frac{tan 45° - tan 30°}{1 + tan 45° tan 30° }$$

= $$\frac{1 - \frac{1}{√3}}{1 + (1 ∙ \frac{1}{√3})}$$

= $$\frac{√3 - 1}{√3 + 1}$$

= $$\frac{(√3 - 1)^{2}}{(√3 + 1)(√3 - 1)}$$

= $$\frac{(√3)^{2} - 2 ∙ √3 + (1)^{2}}{(√3 + 1)(√3 - 1)}$$

= $$\frac{3 + 1 - 2 ∙ √3}{3 - 1}$$

= $$\frac{4 - 2√3}{2}$$

= 2 - √3

2. Prove the identities: $$\frac{cos 10° - sin 10°}{cos 10° + sin 10°}$$ = tan 35°

Solution:

L.H.S = $$\frac{cos 10° - sin 10°}{cos 10° + sin 10°}$$

= $$\frac{1 - tan 10°}{1 + tan 10°}$$, (dividing numerator and denominator by cos 10°)

= $$\frac{tan 45° - tan 10°}{1 + tan 45° tan 10°}$$, (Since we know that, tan 45° = 1)

= tan (45° - 10°)

= tan 35°              Proved

3. If x - y = π/4, prove that (1 + tan x)(1 + tan y) = 2 tan x

Solution:

Given, x - y = π/4

⇒ tan (x - y) = tan π/4

⇒ $$\frac{tan x - tan y}{1 + tan x tan y}$$ = 1, [since tan π/4 = 1]

⇒ 1 + tan x tan y = tan x - tan y

⇒ 1 + tan x tan y + tan y = tan x

⇒ 1 + tan x + tan x tan y + tan y = tan x + tan x, [Adding tan x to both the sides]

⇒ (1 + tan x)(1 + tan y) = 2 tan x              Proved

6. If tan β = $$\frac{n sin \alpha cos \alpha}{1 - n sin^{2} \alpha}$$, show that tan (α - β) = (1 - n) tan α

Solution:

tan (α - β) = $$\frac{tan \alpha - tan \beta }{1 + tan \alpha tan \beta}$$

= $$\frac{\frac{sin \alpha }{cos \alpha} - \frac{n sin \alpha cos \alpha}{1 - n sin^{2} \alpha}}{1 + \frac{sin \alpha}{cos \alpha}\cdot \frac{n sin \alpha cos \alpha}{1 - n sin^{2} \alpha}}$$

$$\frac{sin \alpha (1 - n sin^{2} \alpha) - n sin \alpha cos^{2} \alpha}{cos \alpha (1 - n sin^{2} \alpha) + n sin^{2} \alpha cos \alpha}$$

= $$\frac{sin \alpha}{cos \alpha} \cdot \frac{1 - n sin^{2} \alpha - n cos^{2} \alpha}{1 - n sin^{2} \alpha + n sin^{2} \alpha}$$

= $$\frac{sin \alpha}{cos \alpha} \cdot \frac{1 - (n sin^{2} \alpha + cos^{2} \alpha)}{1 }$$

= tan α ∙ (1 - n ∙ 1), [since, we know that sin$$^{2}$$ θ + cos$$^{2}$$ θ = 1]

= (1 - n) tan α              Proved

7. If tan β = $$\frac{sin α cos α}{2 + cos^{2} α}$$ prove that 3 tan (α - β) = 2 tan α.

Solution:

We have, tan (α - β) = $$\frac{tan α – tan β}{1 + tan α tan β}$$

⇒ tan (α - β) = $$\frac{\frac{sin α}{cos α} - \frac{sin α cos α}{2 + cos^{2} α}}{1 + \frac{sin α}{cos α} ∙ \frac{sin α cos α}{2 + cos^{2} α}}$$, [since we know that, tan β = $$\frac{sin α cos α}{2 + cos^{2} α}$$

⇒ tan (α - β) = $$\frac{2 sin α + sin α cos^{2} α - sin α cos^{2} α}{2 cos α + cos^{3} α + sin^{2} α cos α}$$

⇒ tan (α - β) = $$\frac{2 sin α}{cos α (2 + cos^{2} α + sin^{2} α)}$$

⇒ tan (α - β) = $$\frac{2 sin α}{cos α (2 + 1) }$$, [since we know that cos$$^{2}$$ θ + sin$$^{2}$$ θ = 1]

⇒ tan (α - β) = $$\frac{2 sin α}{3 cos α}$$

⇒ tan (α - β) = 3 tan (α - β)

⇒ tan (α - β) = 2 tan α              Proved

Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.

## Recent Articles

1. ### Method of L.C.M. | Finding L.C.M. | Smallest Common Multiple | Common

Apr 15, 24 01:29 AM

We will discuss here about the method of l.c.m. (least common multiple). Let us consider the numbers 8, 12 and 16. Multiples of 8 are → 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, ......

2. ### Common Multiples | How to Find Common Multiples of Two Numbers?

Apr 15, 24 01:13 AM

Common multiples of two or more given numbers are the numbers which can exactly be divided by each of the given numbers. Consider the following. (i) Multiples of 3 are: 3, 6, 9, 12, 15, 18, 21, 24…

3. ### Least Common Multiple |Lowest Common Multiple|Smallest Common Multiple

Apr 14, 24 03:06 PM

The least common multiple (L.C.M.) of two or more numbers is the smallest number which can be exactly divided by each of the given number. The lowest common multiple or LCM of two or more numbers is t…

4. ### Worksheet on H.C.F. | Word Problems on H.C.F. | H.C.F. Worksheet | Ans

Apr 14, 24 02:23 PM

Practice the questions given in the worksheet on hcf (highest common factor) by factorization method, prime factorization method and division method. Find the common factors of the following numbers…