Proof of Tangent Formula tan (α - β)

We will learn step-by-step the proof of tangent formula tan (α - β).

Prove that: tan (α - β) = \(\frac{tan  α  -  tan  β}{1  +  tan  α  tan  β}\).

Proof: tan (α - β) = \(\frac{sin  (α  -  β)}{cos  (α  -  β)}\)

= \(\frac{sin  α  cos  β  -   cos  α  sin  β}{cos  α  cos  β  +  sin  α  sin  β}\)

\(\frac{\frac{sin  α  cos  β}{cos  α  cos  β} -  \frac{cos  α  sin  β}{cos  α  cos  β}}{\frac{cos  α  cos  B}{cos  α  cos  β} + \frac{sin  α  sin  β}{cos  α  cos  β}}\), [dividing numerator and denominator by cos α cos β].

= \(\frac{tan  α  -  tan  β}{1  +  tan  α  tan  β}\)          Proved

Therefore, tan (α - β) = \(\frac{tan   α  -  tan   β}{1  +  tan  α   tan   β}\).

Solved examples using the proof of tangent formula tan (α - β):

1. Find the values of tan 15°

Solution:

tan 15° = tan (45° - 30°)

           = \(\frac{tan  45° -  tan  30°}{1 +  tan  45° tan  30° }\)

           = \(\frac{1 - \frac{1}{√3}}{1 + (1 ∙ \frac{1}{√3})}\)

           = \(\frac{√3 - 1}{√3 + 1}\)

           = \(\frac{(√3 - 1)^{2}}{(√3 + 1)(√3 - 1)}\)

           = \(\frac{(√3)^{2} - 2 ∙ √3 + (1)^{2}}{(√3 + 1)(√3 - 1)}\)

           = \(\frac{3 + 1 - 2 ∙ √3}{3 - 1}\)

           = \(\frac{4 - 2√3}{2}\)

           = 2 - √3

 

2. Prove the identities: \(\frac{cos  10° - sin  10°}{cos  10°  + sin  10°}\) = tan 35°      

Solution:

L.H.S = \(\frac{cos  10° -  sin  10°}{cos  10° +  sin  10°}\)

        = \(\frac{1 -  tan  10°}{1 +  tan 10°}\), (dividing numerator and denominator by cos 10°)

        = \(\frac{tan  45° -  tan  10°}{1 +  tan  45° tan  10°}\), (Since we know that, tan 45° = 1)

        = tan (45° - 10°)

        = tan 35°              Proved

 

3. If x - y = π/4, prove that (1 + tan x)(1 + tan y) = 2 tan x

Solution:

Given, x - y = π/4

⇒ tan (x - y) = tan π/4

⇒ \(\frac{tan  x -  tan  y}{1 +  tan  x tan  y}\) = 1, [since tan π/4 = 1]

⇒ 1 + tan x tan y = tan x - tan y

⇒ 1 + tan x tan y + tan y = tan x

⇒ 1 + tan x + tan x tan y + tan y = tan x + tan x, [Adding tan x to both the sides]

⇒ (1 + tan x)(1 + tan y) = 2 tan x              Proved

 

6. If tan β = \(\frac{n  sin  \alpha  cos  \alpha}{1 -  n  sin^{2} \alpha}\), show that tan (α - β) = (1 - n) tan α

Solution:

tan (α - β) = \(\frac{tan  \alpha  -  tan  \beta }{1  +  tan  \alpha  tan  \beta}\)

= \(\frac{\frac{sin  \alpha }{cos  \alpha}  - \frac{n  sin  \alpha cos  \alpha}{1  -  n  sin^{2}  \alpha}}{1  +  \frac{sin  \alpha}{cos  \alpha}\cdot \frac{n  sin  \alpha  cos  \alpha}{1  -  n  sin^{2}  \alpha}}\)

\(\frac{sin  \alpha (1  -   n sin^{2}  \alpha)  -  n sin  \alpha cos^{2}  \alpha}{cos  \alpha (1  -  n sin^{2}  \alpha)  +   n  sin^{2}  \alpha  cos  \alpha}\)

= \(\frac{sin  \alpha}{cos  \alpha} \cdot \frac{1  -  n sin^{2}  \alpha  -  n cos^{2}  \alpha}{1  -  n sin^{2}  \alpha  +  n sin^{2}  \alpha}\)

= \(\frac{sin  \alpha}{cos  \alpha} \cdot \frac{1  -  (n  sin^{2} \alpha  +  cos^{2}  \alpha)}{1 }\)

= tan α ∙ (1 - n ∙ 1), [since, we know that sin\(^{2}\) θ + cos\(^{2}\) θ = 1]

= (1 - n) tan α              Proved

 

 7. If tan β = \(\frac{sin  α cos  α}{2  +  cos^{2}  α}\) prove that 3 tan (α - β) = 2 tan α.

Solution:

We have, tan (α - β) = \(\frac{tan  α  –  tan  β}{1 +  tan  α  tan  β}\)

⇒ tan (α - β) = \(\frac{\frac{sin  α}{cos  α}  -  \frac{sin  α  cos  α}{2  +  cos^{2}  α}}{1  +  \frac{sin  α}{cos  α} ∙ \frac{sin  α  cos  α}{2  +  cos^{2}  α}}\), [since we know that, tan β = \(\frac{sin  α  cos  α}{2  +  cos^{2}  α}\)

⇒ tan (α - β) = \(\frac{2  sin  α  +  sin  α   cos^{2}  α  -  sin  α  cos^{2}  α}{2  cos  α  +  cos^{3}  α  +  sin^{2}  α  cos  α}\)

 ⇒ tan (α - β) = \(\frac{2  sin  α}{cos  α (2  +  cos^{2}  α  +   sin^{2}  α)}\)

⇒ tan (α - β) = \(\frac{2  sin  α}{cos  α (2  +  1) }\), [since we know that cos\(^{2}\) θ + sin\(^{2}\) θ = 1]

⇒ tan (α - β) = \(\frac{2 sin  α}{3 cos  α}\)

⇒ tan (α - β) = 3 tan (α - β)

⇒ tan (α - β) = 2 tan α              Proved

 Compound Angle






11 and 12 Grade Math

From Proof of Tangent Formula tan (α - β) to HOME PAGE




Didn't find what you were looking for? Or want to know more information about Math Only Math. Use this Google Search to find what you need.



New! Comments

Have your say about what you just read! Leave me a comment in the box below. Ask a Question or Answer a Question.

Share this page: What’s this?

Recent Articles

  1. 3-digit Numbers on an Abacus | Learning Three Digit Numbers | Math

    Oct 08, 24 10:53 AM

    3-Digit Numbers on an Abacus
    We already know about hundreds, tens and ones. Now let us learn how to represent 3-digit numbers on an abacus. We know, an abacus is a tool or a toy for counting. An abacus which has three rods.

    Read More

  2. Names of Three Digit Numbers | Place Value |2- Digit Numbers|Worksheet

    Oct 07, 24 04:07 PM

    How to write the names of three digit numbers? (i) The name of one-digit numbers are according to the names of the digits 1 (one), 2 (two), 3 (three), 4 (four), 5 (five), 6 (six), 7 (seven)

    Read More

  3. Worksheets on Number Names | Printable Math Worksheets for Kids

    Oct 07, 24 03:29 PM

    Traceable math worksheets on number names for kids in words from one to ten will be very helpful so that kids can practice the easy way to read each numbers in words.

    Read More

  4. The Number 100 | One Hundred | The Smallest 3 Digit Number | Math

    Oct 07, 24 03:13 PM

    The Number 100
    The greatest 1-digit number is 9 The greatest 2-digit number is 99 The smallest 1-digit number is 0 The smallest 2-digit number is 10 If we add 1 to the greatest number, we get the smallest number of…

    Read More

  5. Missing Numbers Worksheet | Missing Numerals |Free Worksheets for Kids

    Oct 07, 24 12:01 PM

    Missing numbers
    Math practice on missing numbers worksheet will help the kids to know the numbers serially. Kids find difficult to memorize the numbers from 1 to 100 in the age of primary, we can understand the menta

    Read More